--- jupytext: text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.16.4 kernelspec: display_name: Python 3 language: python name: python3 --- Trial-based tensors & time warping ================================= The warping module contains functions for constructing trial-based tensors. If the input is a TsGroup containing the activity of a population of neurons: - `nap.build_tensor` returns a tensor of shape (number of neurons, number of trials, number of time bins) with padded values if unequal trial intervals. - `nap.warp_tensor` returns a tensor of shape (number of neurons, number of trials, number of time bins) with linearly warped time bins. Both functions works for all time series object (`Tsd`, `TsdFrame` and `TsdTensor`) and timestamp objects (`Ts` and `TsGroup`). See examples below. ```{code-cell} ipython3 :tags: [hide-cell] import pynapple as nap import numpy as np import matplotlib.pyplot as plt import seaborn as sns custom_params = {"axes.spines.right": False, "axes.spines.top": False} sns.set_theme(style="ticks", palette="colorblind", font_scale=1.5, rc=custom_params) ``` `nap.build_tensor` ------------------ The function `nap.build_tensor` slices a time series object or timestamps object for each interval of an `IntervalSet` object and returns a numpy array. The intervals can be of unequal durations. ```{code-cell} ipython3 tsgroup = nap.TsGroup({0:nap.Ts(t=np.arange(0, 100)+0.5)}) ep = nap.IntervalSet( start=np.arange(20, 80, 20), end=np.arange(20, 80, 20) + np.arange(2, 8, 2), metadata = {'trials':['trial1', 'trial2', 'trial3']} ) print(ep) ``` To build a trial-based count tensor from a `TsGroup` object with 1 second bins: ```{code-cell} ipython3 tensor = nap.build_tensor(tsgroup, ep, bin_size=1, padding_value=np.nan) print(tensor) ``` We can check the operation by plotting the spike times and the edges of the bins for each epoch. ```{code-cell} ipython3 :tags: [hide-input] plt.figure() plt.subplot(211) plt.plot(tsgroup.to_tsd().get(18, 70), '|', color='orange', label = "Spike times neuron 0") [plt.axvspan(s, e, alpha=0.5) for s, e in ep.values] plt.legend() plt.xlabel("Time (s)") for s, e in ep.values: [plt.axvline(t) for t in np.arange(s, e+1)] plt.subplot(212) im = plt.pcolormesh(tensor[0], edgecolors='k', linewidth=2, cmap='RdYlBu', vmin=0, vmax=1) plt.xlabel("Bin time (s)") plt.ylabel("Trials") plt.title("Tensor neuron 0") plt.tight_layout() plt.colorbar(im) plt.yticks([0,1,2]) plt.show() ``` :::{note} This function is also available at the object level. ``` >>> tensor = tsgroup.trial_count(ep, bin_size=1, padding_value=np.nan) ``` ::: It is also possible to create a trial-based tensor from a time series. In this case the argument `bin_size` is not used. ```{code-cell} ipython3 tsdframe = nap.TsdFrame(t=np.arange(100), d=np.arange(200).reshape(2,100).T) tensor = nap.build_tensor(tsdframe, ep) print(tensor) ``` :::{note} This function is also available at the object level. ``` >>> tensor = tsdframe.to_trial_tensor(ep, padding_value=np.nan) ``` ::: ```{code-cell} ipython3 :tags: [hide-input] plt.figure() plt.subplot(211) tmp = tsdframe.get(18, 70)[:,0] plt.plot(tmp, '-', label="tsdframe[:,0]", color='grey') cmap = plt.get_cmap('RdYlBu') for i in range(len(tmp)): plt.plot(tmp.t[i], tmp.d[i], 'o', color=cmap(i/len(tmp))) [plt.axvspan(s, e, alpha=0.5) for s, e in ep.values] plt.legend() plt.xlabel("Time (s)") [plt.axvline(t) for t in ep.values.flatten()] plt.subplot(212) im = plt.pcolormesh(tensor[0], edgecolors='k', linewidth=2, cmap='RdYlBu', vmin=np.min(tmp), vmax=np.max(tmp)) plt.xlabel("Bin time (s)") plt.ylabel("Trials") plt.title("Tensor neuron 0") plt.tight_layout() plt.colorbar(im) plt.yticks([0,1,2]) plt.show() ``` `nap.warp_tensor` ----------------- The function `nap.warp_tensor` is similar to `build_tensor`, but time is stretched linearly for each interval depending on the parameter `num_bins`. In other words, the number of bins between the start and end of an epoch is always `num_bins`, but the duration of each bin can vary across epochs. ```{code-cell} ipython3 tensor = nap.warp_tensor(tsgroup, ep, num_bins=10) print(tensor) ``` ```{code-cell} ipython3 :tags: [hide-input] plt.figure() plt.subplot(211) plt.plot(tsgroup.to_tsd().get(38, 70), '|', color='orange', label = "Spike times neuron 0") [plt.axvspan(s, e, alpha=0.5) for s, e in ep.values[1:]] plt.legend() plt.xlabel("Time (s)") for s, e in ep.values[1:]: [plt.axvline(t) for t in np.linspace(s, e, 11)] plt.subplot(212) im = plt.pcolormesh(tensor[0][1:], edgecolors='k', linewidth=2, cmap='RdYlBu', vmin=0, vmax=1) plt.xlabel("Bin time (s)") plt.ylabel("Trials") plt.title("Tensor neuron 0") plt.tight_layout() plt.colorbar(im) plt.yticks([0,1]) plt.show() ``` It is also possible to warp a time series to create a trial-based tensor. Under the hood, the time series is either bin-averaged or interpolated depending on the number of bins. ```{code-cell} ipython3 tensor = nap.warp_tensor(tsdframe, ep, num_bins=10) print(tensor) ``` ```{code-cell} ipython3 :tags: [hide-input] plt.figure() plt.subplot(211) tmp = tsdframe.get(18, 70)[:,0] plt.plot(tmp, '-', label="tsdframe[:,0]", color='grey') cmap = plt.get_cmap('RdYlBu') for i in range(len(tmp)): plt.plot(tmp.t[i], tmp.d[i], 'o', color=cmap(i/len(tmp))) [plt.axvspan(s, e, alpha=0.5) for s, e in ep.values] plt.legend() plt.xlabel("Time (s)") [plt.axvline(t) for t in ep.values.flatten()] plt.subplot(212) im = plt.pcolormesh(tensor[0], edgecolors='k', linewidth=2, cmap='RdYlBu', vmin=np.min(tmp), vmax=np.max(tmp)) plt.xlabel("Bin time (s)") plt.ylabel("Trials") plt.title("Tensor neuron 0") plt.tight_layout() plt.colorbar(im) plt.yticks([0,1,2]) plt.show() ```