Skip to content

Note

Click here to download the full example code

Filtering

The filtering module holds the functions for frequency manipulation :

  • nap.apply_bandstop_filter
  • nap.apply_lowpass_filter
  • nap.apply_highpass_filter
  • nap.apply_bandpass_filter

The functions have similar calling signatures. For example, to filter a 1000 Hz signal between 10 and 20 Hz using a Butterworth filter:

>>> new_tsd = nap.apply_bandpass_filter(tsd, (10, 20), fs=1000, mode='butter')

Currently, the filtering module provides two methods for frequency manipulation: butter for a recursive Butterworth filter and sinc for a Windowed-sinc convolution. This notebook provides a comparison of the two methods.

Warning

This tutorial uses matplotlib for displaying the figure

You can install all with pip install matplotlib requests tqdm seaborn

mkdocs_gallery_thumbnail_number = 1

Now, import the necessary libraries:

import matplotlib.pyplot as plt
import numpy as np
import seaborn

import pynapple as nap

custom_params = {"axes.spines.right": False, "axes.spines.top": False}
seaborn.set_theme(context='notebook', style="ticks", rc=custom_params)

Introduction

We start by generating a signal with multiple frequencies (2, 10 and 50 Hz).

fs = 1000 # sampling frequency
t = np.linspace(0, 2, fs * 2)
f2 = np.cos(t*2*np.pi*2)
f10 = np.cos(t*2*np.pi*10)
f50 = np.cos(t*2*np.pi*50)

sig = nap.Tsd(t=t,d=f2+f10+f50 + np.random.normal(0, 0.5, len(t)))

Let's plot it

fig = plt.figure(figsize = (15, 5))
plt.plot(sig)
plt.xlabel("Time (s)")

tutorial pynapple filtering

Out:

Text(0.5, 21.249999999999993, 'Time (s)')

We can compute the Fourier transform of sig to verify that all the frequencies are there.

psd = nap.compute_power_spectral_density(sig, fs, norm=True)

fig = plt.figure(figsize = (15, 5))
plt.plot(np.abs(psd))
plt.xlabel("Frequency (Hz)")
plt.ylabel("Amplitude")
plt.xlim(0, 100)

tutorial pynapple filtering

Out:

(0.0, 100.0)

Let's say we would like to see only the 10 Hz component. We can use the function apply_bandpass_filter with mode butter for Butterworth.

sig_butter = nap.apply_bandpass_filter(sig, (8, 12), fs, mode='butter')

Let's compare it to the sinc mode for Windowed-sinc.

sig_sinc = nap.apply_bandpass_filter(sig, (8, 12), fs, mode='sinc', transition_bandwidth=0.003)

Let's plot it

fig = plt.figure(figsize = (15, 5))
plt.subplot(211)
plt.plot(t, f10, '-', color = 'gray', label = "10 Hz component")
plt.xlim(0, 1)
plt.legend()
plt.subplot(212)
# plt.plot(sig, alpha=0.5)
plt.plot(sig_butter, label = "Butterworth")
plt.plot(sig_sinc, '--', label = "Windowed-sinc")
plt.legend()
plt.xlabel("Time (s)")
plt.xlim(0, 1)

tutorial pynapple filtering

Out:

(0.0, 1.0)

This gives similar results except at the edges.

Another use of filtering is to remove some frequencies. Here we can try to remove the 50 Hz component in the signal.

sig_butter = nap.apply_bandstop_filter(sig, cutoff=(45, 55), fs=fs, mode='butter')
sig_sinc = nap.apply_bandstop_filter(sig, cutoff=(45, 55), fs=fs, mode='sinc', transition_bandwidth=0.004)

Let's plot it

fig = plt.figure(figsize = (15, 5))
plt.subplot(211)
plt.plot(t, sig, '-', color = 'gray', label = "Original signal")
plt.xlim(0, 1)
plt.legend()
plt.subplot(212)
plt.plot(sig_butter, label = "Butterworth")
plt.plot(sig_sinc, '--', label = "Windowed-sinc")
plt.legend()
plt.xlabel("Time (Hz)")
plt.xlim(0, 1)

tutorial pynapple filtering

Out:

(0.0, 1.0)

Let's see what frequencies remain;

psd_butter = nap.compute_power_spectral_density(sig_butter, fs, norm=True)
psd_sinc = nap.compute_power_spectral_density(sig_sinc, fs, norm=True)

fig = plt.figure(figsize = (10, 5))
plt.plot(np.abs(psd_butter), label = "Butterworth filter")
plt.plot(np.abs(psd_sinc), label = "Windowed-sinc convolution")
plt.legend()
plt.xlabel("Frequency (Hz)")
plt.ylabel("Amplitude")
plt.xlim(0, 70)

tutorial pynapple filtering

Out:

(0.0, 70.0)

The remaining notebook compares the two modes.


Frequency Responses

We can inspect the frequency response of a filter by plotting its power spectral density (PSD). To do this, we can use the get_filter_frequency_response function, which returns a pandas Series with the frequencies as the index and the PSD as values.

Let's extract the frequency response of a Butterworth filter and a sinc low-pass filter.

# compute the frequency response of the filters
psd_butter = nap.get_filter_frequency_response(
    200, fs,"lowpass", "butter", order=8
)
psd_sinc = nap.get_filter_frequency_response(
    200, fs,"lowpass", "sinc", transition_bandwidth=0.1
)

...and plot it.

# compute the transition bandwidth
tb_butter = psd_butter[psd_butter > 0.99].index.max(), psd_butter[psd_butter < 0.01].index.min()
tb_sinc = psd_sinc[psd_sinc > 0.99].index.max(), psd_sinc[psd_sinc < 0.01].index.min()

fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(15, 5))
fig.suptitle("Frequency response", fontsize="x-large")
axs[0].set_title("Butterworth Filter")
axs[0].plot(psd_butter)
axs[0].axvspan(0, tb_butter[0], alpha=0.4, color="green", label="Pass Band")
axs[0].axvspan(*tb_butter, alpha=0.4, color="orange", label="Transition Band")
axs[0].axvspan(tb_butter[1], 500, alpha=0.4, color="red", label="Stop Band")
axs[0].legend().get_frame().set_alpha(1.)
axs[0].set_xlim(0, 500)
axs[0].set_xlabel("Frequency (Hz)")
axs[0].set_ylabel("Amplitude")

axs[1].set_title("Sinc Filter")
axs[1].plot(psd_sinc)
axs[1].axvspan(0, tb_sinc[0], alpha=0.4, color="green", label="Pass Band")
axs[1].axvspan(*tb_sinc, alpha=0.4, color="orange", label="Transition Band")
axs[1].axvspan(tb_sinc[1], 500, alpha=0.4, color="red", label="Stop Band")
axs[1].legend().get_frame().set_alpha(1.)
axs[1].set_xlabel("Frequency (Hz)")

print(f"Transition band butterworth filter: ({int(tb_butter[0])}Hz, {int(tb_butter[1])}Hz)")
print(f"Transition band sinc filter: ({int(tb_sinc[0])}Hz, {int(tb_sinc[1])}Hz)")

Frequency response, Butterworth Filter, Sinc Filter

Out:

Transition band butterworth filter: (164Hz, 290Hz)
Transition band sinc filter: (146Hz, 268Hz)

The frequency band with response close to one will be preserved by the filtering (pass band), the band with response close to zero will be discarded (stop band), and the band in between will be partially attenuated (transition band).

Transition Bandwidth (Click to expand/collapse)

Here, we define the transition band as the range where the amplitude attenuation is between 99% and 1%. The transition_bandwidth parameter of the sinc filter is approximately the width of the transition band normalized by the sampling frequency. In the example above, if you divide the transition band width of 122Hz by the sampling frequency of 1000Hz, you get 0.122, which is close to the 0.1 value set.

You can modulate the width of the transition band by setting the order parameter of the Butterworth filter or the transition_bandwidth parameter of the sinc filter. First, let's get the frequency response for a Butterworth low pass filter with different order:

butter_freq = {
    order: nap.get_filter_frequency_response(250, fs, "lowpass", "butter", order=order)
    for order in [2, 4, 6]}

... and then the frequency response for the Windowed-sinc equivalent with different transition bandwidth.

sinc_freq = {
    tb: nap.get_filter_frequency_response(250, fs,"lowpass", "sinc", transition_bandwidth=tb)
    for tb in [0.002, 0.02, 0.2]}

Let's plot the frequency response of both.

fig = plt.figure(figsize = (20, 10))
gs = plt.GridSpec(2, 2)
for order in butter_freq.keys():
    plt.subplot(gs[0, 0])
    plt.plot(butter_freq[order], label = f"order={order}")
    plt.ylabel('Amplitude')
    plt.legend()
    plt.title("Butterworth recursive")
    plt.subplot(gs[1, 0])
    plt.plot(20*np.log10(butter_freq[order]), label = f"order={order}")
    plt.xlabel('Frequency [Hz]')
    plt.ylabel('Amplitude [dB]')
    plt.ylim(-200,20)
    plt.legend()

for tb in sinc_freq.keys():
    plt.subplot(gs[0, 1])
    plt.plot(sinc_freq[tb], label= f"width={tb}")
    plt.ylabel('Amplitude')
    plt.legend()
    plt.title("Windowed-sinc conv.")
    plt.subplot(gs[1, 1])
    plt.plot(20*np.log10(sinc_freq[tb]), label= f"width={tb}")
    plt.xlabel('Frequency [Hz]')
    plt.ylabel('Amplitude [dB]')
    plt.ylim(-200,20)
    plt.legend()

Butterworth recursive, Windowed-sinc conv.

⚠️ Warning: In some cases, the transition bandwidth that is too high generates a kernel that is too short. The amplitude of the original signal will then be lower than expected. In this case, the solution is to decrease the transition bandwidth when using the windowed-sinc mode. Note that this increases the length of the kernel significantly. Let see it with the band pass filter.

sinc_freq = {
    tb:nap.get_filter_frequency_response((100, 200), fs, "bandpass", "sinc", transition_bandwidth=tb)
    for tb in [0.004, 0.2]}


fig = plt.figure(figsize = (20, 10))
for tb in sinc_freq.keys():
    plt.plot(sinc_freq[tb], label= f"width={tb}")
    plt.ylabel('Amplitude')
    plt.legend()
    plt.title("Windowed-sinc conv.")
    plt.legend()

Windowed-sinc conv.


Performances

Let's compare the performance of each when varying the number of time points and the number of dimensions.

from time import perf_counter

def get_mean_perf(tsd, mode, n=10):
    tmp = np.zeros(n)
    for i in range(n):
        t1 = perf_counter()
        _ = nap.apply_lowpass_filter(tsd, 0.25 * tsd.rate, mode=mode)
        t2 = perf_counter()
        tmp[i] = t2 - t1
    return [np.mean(tmp), np.std(tmp)]

def benchmark_time_points(mode):
    times = []
    for T in np.arange(1000, 100000, 20000):
        time_array = np.arange(T)/1000
        data_array = np.random.randn(len(time_array))
        startend = np.linspace(0, time_array[-1], T//100).reshape(T//200, 2)
        ep = nap.IntervalSet(start=startend[::2,0], end=startend[::2,1])
        tsd = nap.Tsd(t=time_array, d=data_array, time_support=ep)
        times.append([T]+get_mean_perf(tsd, mode))
    return np.array(times)

def benchmark_dimensions(mode):
    times = []
    for n in np.arange(1, 100, 10):
        time_array = np.arange(10000)/1000
        data_array = np.random.randn(len(time_array), n)
        startend = np.linspace(0, time_array[-1], 10000//100).reshape(10000//200, 2)
        ep = nap.IntervalSet(start=startend[::2,0], end=startend[::2,1])
        tsd = nap.TsdFrame(t=time_array, d=data_array, time_support=ep)
        times.append([n]+get_mean_perf(tsd, mode))
    return np.array(times)


times_sinc = benchmark_time_points(mode="sinc")
times_butter = benchmark_time_points(mode="butter")

dims_sinc = benchmark_dimensions(mode="sinc")
dims_butter = benchmark_dimensions(mode="butter")


plt.figure(figsize = (16, 5))
plt.subplot(121)
for arr, label in zip(
    [times_sinc, times_butter],
    ["Windowed-sinc", "Butter"],
    ):
    plt.plot(arr[:, 0], arr[:, 1], "o-", label=label)
    plt.fill_between(arr[:, 0], arr[:, 1] - arr[:, 2], arr[:, 1] + arr[:, 2], alpha=0.2)
plt.legend()
plt.xlabel("Number of time points")
plt.ylabel("Time (s)")
plt.title("Low pass filtering benchmark")
plt.subplot(122)
for arr, label in zip(
    [dims_sinc, dims_butter],
    ["Windowed-sinc", "Butter"],
    ):
    plt.plot(arr[:, 0], arr[:, 1], "o-", label=label)
    plt.fill_between(arr[:, 0], arr[:, 1] - arr[:, 2], arr[:, 1] + arr[:, 2], alpha=0.2)
plt.legend()
plt.xlabel("Number of dimensions")
plt.ylabel("Time (s)")
plt.title("Low pass filtering benchmark")

Low pass filtering benchmark, Low pass filtering benchmark

Out:

Text(0.5, 1.0, 'Low pass filtering benchmark')

Total running time of the script: ( 0 minutes 5.850 seconds)

Download Python source code: tutorial_pynapple_filtering.py

Download Jupyter notebook: tutorial_pynapple_filtering.ipynb

Gallery generated by mkdocs-gallery