Base class
pynapple.core.base_class
Abstract class for core
time series.
Base
Bases: ABC
Abstract base class for time series and timestamps objects.
Implement most of the shared functions across concrete classes Ts
, Tsd
, TsdFrame
, TsdTensor
Source code in pynapple/core/base_class.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
|
__setattr__
Object is immutable
Source code in pynapple/core/base_class.py
__getitem__
abstractmethod
times
The time index of the object, returned as np.double in the desired time units.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
ndarray
|
the time indexes |
Source code in pynapple/core/base_class.py
start_time
The first time index in the time series object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
float64
|
_ |
Source code in pynapple/core/base_class.py
end_time
The last time index in the time series object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
float64
|
_ |
Source code in pynapple/core/base_class.py
value_from
Replace the value with the closest value from Tsd/TsdFrame/TsdTensor argument
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
(Tsd, TsdFrame or TsdTensor)
|
The object holding the values to replace. |
required |
ep |
IntervalSet(optional)
|
The IntervalSet object to restrict the operation. If None, the time support of the tsd input object is used. |
None
|
Returns:
Name | Type | Description |
---|---|---|
out |
(Tsd, TsdFrame or TsdTensor)
|
Object with the new values |
Examples:
In this example, the ts object will receive the closest values in time from tsd.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100))) # random times
>>> ts = nap.Ts(t=t, time_units='s')
>>> tsd = nap.Tsd(t=np.arange(0,1000), d=np.random.rand(1000), time_units='s')
>>> ep = nap.IntervalSet(start = 0, end = 500, time_units = 's')
The variable ts is a timestamp object. The tsd object containing the values, for example the tracking data, and the epoch to restrict the operation.
newts is the same size as ts restrict to ep.
Source code in pynapple/core/base_class.py
count
Count occurences of events within bin_size or within a set of bins defined as an IntervalSet. You can call this function in multiple ways :
-
tsd.count(bin_size=1, time_units = 'ms') -> Count occurence of events within a 1 ms bin defined on the time support of the object.
-
tsd.count(1, ep=my_epochs) -> Count occurent of events within a 1 second bin defined on the IntervalSet my_epochs.
-
tsd.count(ep=my_bins) -> Count occurent of events within each epoch of the intervalSet object my_bins
-
tsd.count() -> Count occurent of events within each epoch of the time support.
bin_size should be seconds unless specified. If bin_size is used and no epochs is passed, the data will be binned based on the time support of the object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_size |
None or float
|
The bin size (default is second) |
required |
ep |
None or IntervalSet
|
IntervalSet to restrict the operation |
required |
time_units |
str
|
Time units of bin size ('us', 'ms', 's' [default]) |
required |
dtype |
Data type for the count. Default is np.int64. |
None
|
Returns:
Name | Type | Description |
---|---|---|
out |
Tsd
|
A Tsd object indexed by the center of the bins. |
Examples:
This example shows how to count events within bins of 0.1 second.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> ts = nap.Ts(t=t, time_units='s')
>>> bincount = ts.count(0.1)
An epoch can be specified:
>>> ep = nap.IntervalSet(start = 100, end = 800, time_units = 's')
>>> bincount = ts.count(0.1, ep=ep)
And bincount automatically inherit ep as time support:
Source code in pynapple/core/base_class.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
|
restrict
Restricts a time series object to a set of time intervals delimited by an IntervalSet object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iset |
IntervalSet
|
the IntervalSet object |
required |
Returns:
Type | Description |
---|---|
(Ts, Tsd, TsdFrame or TsdTensor)
|
Tsd object restricted to ep |
Examples:
The Ts object is restrict to the intervals defined by ep.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> ts = nap.Ts(t=t, time_units='s')
>>> ep = nap.IntervalSet(start=0, end=500, time_units='s')
>>> newts = ts.restrict(ep)
The time support of newts automatically inherit the epochs defined by ep.
Source code in pynapple/core/base_class.py
copy
find_support
find the smallest (to a min_gap resolution) IntervalSet containing all the times in the Tsd
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_gap |
float or int
|
minimal interval between timestamps |
required |
time_units |
str
|
Time units of min gap |
's'
|
Returns:
Type | Description |
---|---|
IntervalSet
|
Description |
Source code in pynapple/core/base_class.py
get
Slice the time series from start
to end
such that all the timestamps satisfy start<=t<=end
.
If end
is None, only the timepoint closest to start
is returned.
By default, the time support doesn't change. If you want to change the time support, use the restrict
function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
float or int
|
The start (or closest time point if |
required |
end |
float or int or None
|
The end |
None
|
Source code in pynapple/core/base_class.py
get_slice
Get a slice object from the time series data based on the start and end values such that all the timestamps satisfy start<=t<=end
.
If end
is None, only the timepoint closest to start
is returned.
By default, the time support doesn't change. If you want to change the time support, use the restrict
function.
This function is equivalent of calling the get
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
int or float
|
The starting value for the slice. |
required |
end |
int or float
|
The ending value for the slice. Defaults to None. |
None
|
time_unit |
str
|
The time unit for the start and end values. Defaults to "s" (seconds). |
's'
|
Returns:
Name | Type | Description |
---|---|---|
slice |
slice
|
A slice determining the start and end indices, with unit step
Slicing the array will be equivalent to calling get: |
Raises:
Type | Description |
---|---|
ValueError
|
|
Examples:
>>> # slice over a range
>>> start, end = 1.2, 2.6
>>> print(ts.get_slice(start, end)) # returns `slice(2, 3, None)`
>>> start, end = 1., 2.
>>> print(ts.get_slice(start, end, mode="forward")) # returns `slice(1, 3, None)`
>>> # slice a single value
>>> start = 1.2
>>> print(ts.get_slice(start)) # returns `slice(1, 2, None)`
>>> start = 2.
>>> print(ts.get_slice(start)) # returns `slice(2, 3, None)`