Time series
pynapple.core.time_series
Pynapple time series are containers specialized for neurophysiological time series.
They provides standardized time representation, plus various functions for manipulating times series with identical sampling frequency.
Multiple time series object are avaible depending on the shape of the data.
TsdTensor
: for data with of more than 2 dimensions, typically movies.TsdFrame
: for column-based data. It can be easily converted to a pandas.DataFrame. Columns can be labelled and selected similar to pandas.Tsd
: One-dimensional time series. It can be converted to a pandas.Series.Ts
: For timestamps data only.
Most of the same functions are available through all classes. Objects behaves like numpy.ndarray. Slicing can be done the same way for example
tsd[0:10]
returns the first 10 rows. Similarly, you can call any numpy functions like np.mean(tsd, 1)
.
BaseTsd
Bases: Base
, NDArrayOperatorsMixin
, ABC
Abstract base class for time series objects.
Implement most of the shared functions across concrete classes Tsd
, TsdFrame
, TsdTensor
Source code in pynapple/core/time_series.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
|
__setattr__
Object is immutable
Source code in pynapple/core/base_class.py
__getitem__
abstractmethod
times
The time index of the object, returned as np.double in the desired time units.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
ndarray
|
the time indexes |
Source code in pynapple/core/base_class.py
start_time
The first time index in the time series object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
float64
|
_ |
Source code in pynapple/core/base_class.py
end_time
The last time index in the time series object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
float64
|
_ |
Source code in pynapple/core/base_class.py
restrict
Restricts a time series object to a set of time intervals delimited by an IntervalSet object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iset |
IntervalSet
|
the IntervalSet object |
required |
Returns:
Type | Description |
---|---|
(Ts, Tsd, TsdFrame or TsdTensor)
|
Tsd object restricted to ep |
Examples:
The Ts object is restrict to the intervals defined by ep.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> ts = nap.Ts(t=t, time_units='s')
>>> ep = nap.IntervalSet(start=0, end=500, time_units='s')
>>> newts = ts.restrict(ep)
The time support of newts automatically inherit the epochs defined by ep.
Source code in pynapple/core/base_class.py
find_support
find the smallest (to a min_gap resolution) IntervalSet containing all the times in the Tsd
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_gap |
float or int
|
minimal interval between timestamps |
required |
time_units |
str
|
Time units of min gap |
's'
|
Returns:
Type | Description |
---|---|
IntervalSet
|
Description |
Source code in pynapple/core/base_class.py
get
Slice the time series from start
to end
such that all the timestamps satisfy start<=t<=end
.
If end
is None, only the timepoint closest to start
is returned.
By default, the time support doesn't change. If you want to change the time support, use the restrict
function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
float or int
|
The start (or closest time point if |
required |
end |
float or int or None
|
The end |
None
|
Source code in pynapple/core/base_class.py
get_slice
Get a slice object from the time series data based on the start and end values such that all the timestamps satisfy start<=t<=end
.
If end
is None, only the timepoint closest to start
is returned.
By default, the time support doesn't change. If you want to change the time support, use the restrict
function.
This function is equivalent of calling the get
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
int or float
|
The starting value for the slice. |
required |
end |
int or float
|
The ending value for the slice. Defaults to None. |
None
|
time_unit |
str
|
The time unit for the start and end values. Defaults to "s" (seconds). |
's'
|
Returns:
Name | Type | Description |
---|---|---|
slice |
slice
|
A slice determining the start and end indices, with unit step
Slicing the array will be equivalent to calling get: |
Raises:
Type | Description |
---|---|
ValueError
|
|
Examples:
>>> # slice over a range
>>> start, end = 1.2, 2.6
>>> print(ts.get_slice(start, end)) # returns `slice(2, 3, None)`
>>> start, end = 1., 2.
>>> print(ts.get_slice(start, end, mode="forward")) # returns `slice(1, 3, None)`
>>> # slice a single value
>>> start = 1.2
>>> print(ts.get_slice(start)) # returns `slice(1, 2, None)`
>>> start = 2.
>>> print(ts.get_slice(start)) # returns `slice(2, 3, None)`
Source code in pynapple/core/base_class.py
__setitem__
__getattr__
Allow numpy functions to be attached as attributes of Tsd objects
Source code in pynapple/core/time_series.py
as_array
data
to_numpy
Return the data as a numpy.ndarray.
Mostly useful for matplotlib plotting when calling plot(tsd)
.
copy
value_from
Replace the value with the closest value from Tsd/TsdFrame/TsdTensor argument
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
(Tsd, TsdFrame or TsdTensor)
|
The object holding the values to replace. |
required |
ep |
IntervalSet(optional)
|
The IntervalSet object to restrict the operation. If None, the time support of the tsd input object is used. |
None
|
Returns:
Name | Type | Description |
---|---|---|
out |
(Tsd, TsdFrame or TsdTensor)
|
Object with the new values |
Examples:
In this example, the ts object will receive the closest values in time from tsd.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100))) # random times
>>> ts = nap.Ts(t=t, time_units='s')
>>> tsd = nap.Tsd(t=np.arange(0,1000), d=np.random.rand(1000), time_units='s')
>>> ep = nap.IntervalSet(start = 0, end = 500, time_units = 's')
The variable ts is a time series object containing only nan. The tsd object containing the values, for example the tracking data, and the epoch to restrict the operation.
newts has the same size of ts restrict to ep.
Source code in pynapple/core/time_series.py
count
Count occurences of events within bin_size or within a set of bins defined as an IntervalSet. You can call this function in multiple ways :
-
tsd.count(bin_size=1, time_units = 'ms') -> Count occurence of events within a 1 ms bin defined on the time support of the object.
-
tsd.count(1, ep=my_epochs) -> Count occurent of events within a 1 second bin defined on the IntervalSet my_epochs.
-
tsd.count(ep=my_bins) -> Count occurent of events within each epoch of the intervalSet object my_bins
-
tsd.count() -> Count occurent of events within each epoch of the time support.
bin_size should be seconds unless specified. If bin_size is used and no epochs is passed, the data will be binned based on the time support of the object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_size |
None or float
|
The bin size (default is second) |
required |
ep |
None or IntervalSet
|
IntervalSet to restrict the operation |
required |
time_units |
str
|
Time units of bin size ('us', 'ms', 's' [default]) |
required |
dtype |
Data type for the count. Default is np.int64. |
None
|
Returns:
Name | Type | Description |
---|---|---|
out |
Tsd
|
A Tsd object indexed by the center of the bins. |
Examples:
This example shows how to count events within bins of 0.1 second.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> ts = nap.Ts(t=t, time_units='s')
>>> bincount = ts.count(0.1)
An epoch can be specified:
>>> ep = nap.IntervalSet(start = 100, end = 800, time_units = 's')
>>> bincount = ts.count(0.1, ep=ep)
And bincount automatically inherit ep as time support:
Source code in pynapple/core/time_series.py
bin_average
Bin the data by averaging points within bin_size bin_size should be seconds unless specified. If no epochs is passed, the data will be binned based on the time support.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_size |
float
|
The bin size (default is second) |
required |
ep |
None or IntervalSet
|
IntervalSet to restrict the operation |
None
|
time_units |
str
|
Time units of bin size ('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
(Tsd, TsdFrame, TsdTensor)
|
A Tsd object indexed by the center of the bins and holding the averaged data points. |
Examples:
This example shows how to bin data within bins of 0.1 second.
>>> import pynapple as nap
>>> import numpy as np
>>> tsd = nap.Tsd(t=np.arange(100), d=np.random.rand(100))
>>> bintsd = tsd.bin_average(0.1)
An epoch can be specified:
>>> ep = nap.IntervalSet(start = 10, end = 80, time_units = 's')
>>> bintsd = tsd.bin_average(0.1, ep=ep)
And bintsd automatically inherit ep as time support:
Source code in pynapple/core/time_series.py
dropna
Drop every rows containing NaNs. By default, the time support is updated to start and end around the time points that are non NaNs. To change this behavior, you can set update_time_support=False.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
update_time_support |
bool
|
|
True
|
Returns:
Type | Description |
---|---|
(Tsd, TsdFrame or TsdTensor)
|
The time series without the NaNs |
Source code in pynapple/core/time_series.py
convolve
Return the discrete linear convolution of the time series with a one dimensional sequence.
A parameter ep can control the epochs for which the convolution will apply. Otherwise the convolution is made over the time support.
This function assume a constant sampling rate of the time series.
The only mode supported is full. The returned object is trimmed to match the size of the original object. The parameter trim controls which side the trimming operates. Default is 'both'.
See the numpy documentation here : https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
array |
array - like
|
1-D or 2-D array with kernel(s) to be used for convolution. First dimension is assumed to be time. |
required |
ep |
None
|
The epochs to apply the convolution |
None
|
trim |
str
|
The side on which to trim the output of the convolution ('left', 'right', 'both' [default]) |
'both'
|
Returns:
Type | Description |
---|---|
(Tsd, TsdFrame or TsdTensor)
|
The convolved time series |
Source code in pynapple/core/time_series.py
smooth
Smooth a time series with a gaussian kernel.
std
is the standard deviation of the gaussian kernel in units of time.
If only std
is passed, the function will compute the standard deviation and size in number
of time points automatically based on the sampling rate of the time series.
For example, if the time series tsd
has a sample rate of 100 Hz and std
is 50 ms,
the standard deviation will be converted to an integer through
tsd.rate * std = int(100 * 0.05) = 5
.
If windowsize
is None, the function will select a kernel size as 100 times
the std in number of time points. This behavior can be controlled with the
parameter size_factor
.
norm
set to True normalizes the gaussian kernel to sum to 1.
In the following example, a time series tsd
with a sampling rate of 100 Hz
is convolved with a gaussian kernel. The standard deviation is
0.05 second and the windowsize is 2 second. When instantiating the gaussian kernel
from scipy, it corresponds to parameters M = 200
and std=5
>>> tsd.smooth(std=0.05, windowsize=2, time_units='s', norm=False)
This line is equivalent to :
>>> from scipy.signal.windows import gaussian
>>> kernel = gaussian(M = 200, std=5)
>>> tsd.convolve(window)
It is generally a good idea to visualize the kernel before applying any convolution.
See the scipy documentation for the gaussian window
Parameters:
Name | Type | Description | Default |
---|---|---|---|
std |
Number
|
Standard deviation in units of time |
required |
windowsize |
Number
|
Size of the gaussian window in units of time. |
None
|
time_units |
str
|
The time units in which std and windowsize are specified ('us', 'ms', 's' [default]). |
's'
|
size_factor |
int
|
How long should be the kernel size as a function of the standard deviation. Default is 100. Bypassed if windowsize is used. |
100
|
norm |
bool
|
Whether to normalized the gaussian kernel or not. Default is |
True
|
Returns:
Type | Description |
---|---|
(Tsd, TsdFrame, TsdTensor)
|
Time series convolved with a gaussian kernel |
Source code in pynapple/core/time_series.py
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
|
interpolate
Wrapper of the numpy linear interpolation method. See numpy interpolate for an explanation of the parameters. The argument ts should be Ts, Tsd, TsdFrame, TsdTensor to ensure interpolating from sorted timestamps in the right unit,
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ts |
(Ts, Tsd, TsdFrame or TsdTensor)
|
The object holding the timestamps |
required |
ep |
IntervalSet
|
The epochs to use to interpolate. If None, the time support of Tsd is used. |
None
|
left |
None
|
Value to return for ts < tsd[0], default is tsd[0]. |
None
|
right |
None
|
Value to return for ts > tsd[-1], default is tsd[-1]. |
None
|
Source code in pynapple/core/time_series.py
TsdTensor
Bases: BaseTsd
TsdTensor
Attributes:
Name | Type | Description |
---|---|---|
rate |
float
|
Frequency of the time series (Hz) computed over the time support |
time_support |
IntervalSet
|
The time support of the time series |
Source code in pynapple/core/time_series.py
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
|
__setattr__
Object is immutable
Source code in pynapple/core/base_class.py
__setitem__
times
The time index of the object, returned as np.double in the desired time units.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
ndarray
|
the time indexes |
Source code in pynapple/core/base_class.py
start_time
The first time index in the time series object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
float64
|
_ |
Source code in pynapple/core/base_class.py
end_time
The last time index in the time series object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
float64
|
_ |
Source code in pynapple/core/base_class.py
value_from
Replace the value with the closest value from Tsd/TsdFrame/TsdTensor argument
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
(Tsd, TsdFrame or TsdTensor)
|
The object holding the values to replace. |
required |
ep |
IntervalSet(optional)
|
The IntervalSet object to restrict the operation. If None, the time support of the tsd input object is used. |
None
|
Returns:
Name | Type | Description |
---|---|---|
out |
(Tsd, TsdFrame or TsdTensor)
|
Object with the new values |
Examples:
In this example, the ts object will receive the closest values in time from tsd.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100))) # random times
>>> ts = nap.Ts(t=t, time_units='s')
>>> tsd = nap.Tsd(t=np.arange(0,1000), d=np.random.rand(1000), time_units='s')
>>> ep = nap.IntervalSet(start = 0, end = 500, time_units = 's')
The variable ts is a time series object containing only nan. The tsd object containing the values, for example the tracking data, and the epoch to restrict the operation.
newts has the same size of ts restrict to ep.
Source code in pynapple/core/time_series.py
count
Count occurences of events within bin_size or within a set of bins defined as an IntervalSet. You can call this function in multiple ways :
-
tsd.count(bin_size=1, time_units = 'ms') -> Count occurence of events within a 1 ms bin defined on the time support of the object.
-
tsd.count(1, ep=my_epochs) -> Count occurent of events within a 1 second bin defined on the IntervalSet my_epochs.
-
tsd.count(ep=my_bins) -> Count occurent of events within each epoch of the intervalSet object my_bins
-
tsd.count() -> Count occurent of events within each epoch of the time support.
bin_size should be seconds unless specified. If bin_size is used and no epochs is passed, the data will be binned based on the time support of the object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_size |
None or float
|
The bin size (default is second) |
required |
ep |
None or IntervalSet
|
IntervalSet to restrict the operation |
required |
time_units |
str
|
Time units of bin size ('us', 'ms', 's' [default]) |
required |
dtype |
Data type for the count. Default is np.int64. |
None
|
Returns:
Name | Type | Description |
---|---|---|
out |
Tsd
|
A Tsd object indexed by the center of the bins. |
Examples:
This example shows how to count events within bins of 0.1 second.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> ts = nap.Ts(t=t, time_units='s')
>>> bincount = ts.count(0.1)
An epoch can be specified:
>>> ep = nap.IntervalSet(start = 100, end = 800, time_units = 's')
>>> bincount = ts.count(0.1, ep=ep)
And bincount automatically inherit ep as time support:
Source code in pynapple/core/time_series.py
restrict
Restricts a time series object to a set of time intervals delimited by an IntervalSet object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iset |
IntervalSet
|
the IntervalSet object |
required |
Returns:
Type | Description |
---|---|
(Ts, Tsd, TsdFrame or TsdTensor)
|
Tsd object restricted to ep |
Examples:
The Ts object is restrict to the intervals defined by ep.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> ts = nap.Ts(t=t, time_units='s')
>>> ep = nap.IntervalSet(start=0, end=500, time_units='s')
>>> newts = ts.restrict(ep)
The time support of newts automatically inherit the epochs defined by ep.
Source code in pynapple/core/base_class.py
copy
find_support
find the smallest (to a min_gap resolution) IntervalSet containing all the times in the Tsd
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_gap |
float or int
|
minimal interval between timestamps |
required |
time_units |
str
|
Time units of min gap |
's'
|
Returns:
Type | Description |
---|---|
IntervalSet
|
Description |
Source code in pynapple/core/base_class.py
get
Slice the time series from start
to end
such that all the timestamps satisfy start<=t<=end
.
If end
is None, only the timepoint closest to start
is returned.
By default, the time support doesn't change. If you want to change the time support, use the restrict
function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
float or int
|
The start (or closest time point if |
required |
end |
float or int or None
|
The end |
None
|
Source code in pynapple/core/base_class.py
get_slice
Get a slice object from the time series data based on the start and end values such that all the timestamps satisfy start<=t<=end
.
If end
is None, only the timepoint closest to start
is returned.
By default, the time support doesn't change. If you want to change the time support, use the restrict
function.
This function is equivalent of calling the get
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
int or float
|
The starting value for the slice. |
required |
end |
int or float
|
The ending value for the slice. Defaults to None. |
None
|
time_unit |
str
|
The time unit for the start and end values. Defaults to "s" (seconds). |
's'
|
Returns:
Name | Type | Description |
---|---|---|
slice |
slice
|
A slice determining the start and end indices, with unit step
Slicing the array will be equivalent to calling get: |
Raises:
Type | Description |
---|---|
ValueError
|
|
Examples:
>>> # slice over a range
>>> start, end = 1.2, 2.6
>>> print(ts.get_slice(start, end)) # returns `slice(2, 3, None)`
>>> start, end = 1., 2.
>>> print(ts.get_slice(start, end, mode="forward")) # returns `slice(1, 3, None)`
>>> # slice a single value
>>> start = 1.2
>>> print(ts.get_slice(start)) # returns `slice(1, 2, None)`
>>> start = 2.
>>> print(ts.get_slice(start)) # returns `slice(2, 3, None)`
Source code in pynapple/core/base_class.py
__getattr__
Allow numpy functions to be attached as attributes of Tsd objects
Source code in pynapple/core/time_series.py
as_array
data
to_numpy
Return the data as a numpy.ndarray.
Mostly useful for matplotlib plotting when calling plot(tsd)
.
bin_average
Bin the data by averaging points within bin_size bin_size should be seconds unless specified. If no epochs is passed, the data will be binned based on the time support.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_size |
float
|
The bin size (default is second) |
required |
ep |
None or IntervalSet
|
IntervalSet to restrict the operation |
None
|
time_units |
str
|
Time units of bin size ('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
(Tsd, TsdFrame, TsdTensor)
|
A Tsd object indexed by the center of the bins and holding the averaged data points. |
Examples:
This example shows how to bin data within bins of 0.1 second.
>>> import pynapple as nap
>>> import numpy as np
>>> tsd = nap.Tsd(t=np.arange(100), d=np.random.rand(100))
>>> bintsd = tsd.bin_average(0.1)
An epoch can be specified:
>>> ep = nap.IntervalSet(start = 10, end = 80, time_units = 's')
>>> bintsd = tsd.bin_average(0.1, ep=ep)
And bintsd automatically inherit ep as time support:
Source code in pynapple/core/time_series.py
dropna
Drop every rows containing NaNs. By default, the time support is updated to start and end around the time points that are non NaNs. To change this behavior, you can set update_time_support=False.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
update_time_support |
bool
|
|
True
|
Returns:
Type | Description |
---|---|
(Tsd, TsdFrame or TsdTensor)
|
The time series without the NaNs |
Source code in pynapple/core/time_series.py
convolve
Return the discrete linear convolution of the time series with a one dimensional sequence.
A parameter ep can control the epochs for which the convolution will apply. Otherwise the convolution is made over the time support.
This function assume a constant sampling rate of the time series.
The only mode supported is full. The returned object is trimmed to match the size of the original object. The parameter trim controls which side the trimming operates. Default is 'both'.
See the numpy documentation here : https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
array |
array - like
|
1-D or 2-D array with kernel(s) to be used for convolution. First dimension is assumed to be time. |
required |
ep |
None
|
The epochs to apply the convolution |
None
|
trim |
str
|
The side on which to trim the output of the convolution ('left', 'right', 'both' [default]) |
'both'
|
Returns:
Type | Description |
---|---|
(Tsd, TsdFrame or TsdTensor)
|
The convolved time series |
Source code in pynapple/core/time_series.py
smooth
Smooth a time series with a gaussian kernel.
std
is the standard deviation of the gaussian kernel in units of time.
If only std
is passed, the function will compute the standard deviation and size in number
of time points automatically based on the sampling rate of the time series.
For example, if the time series tsd
has a sample rate of 100 Hz and std
is 50 ms,
the standard deviation will be converted to an integer through
tsd.rate * std = int(100 * 0.05) = 5
.
If windowsize
is None, the function will select a kernel size as 100 times
the std in number of time points. This behavior can be controlled with the
parameter size_factor
.
norm
set to True normalizes the gaussian kernel to sum to 1.
In the following example, a time series tsd
with a sampling rate of 100 Hz
is convolved with a gaussian kernel. The standard deviation is
0.05 second and the windowsize is 2 second. When instantiating the gaussian kernel
from scipy, it corresponds to parameters M = 200
and std=5
>>> tsd.smooth(std=0.05, windowsize=2, time_units='s', norm=False)
This line is equivalent to :
>>> from scipy.signal.windows import gaussian
>>> kernel = gaussian(M = 200, std=5)
>>> tsd.convolve(window)
It is generally a good idea to visualize the kernel before applying any convolution.
See the scipy documentation for the gaussian window
Parameters:
Name | Type | Description | Default |
---|---|---|---|
std |
Number
|
Standard deviation in units of time |
required |
windowsize |
Number
|
Size of the gaussian window in units of time. |
None
|
time_units |
str
|
The time units in which std and windowsize are specified ('us', 'ms', 's' [default]). |
's'
|
size_factor |
int
|
How long should be the kernel size as a function of the standard deviation. Default is 100. Bypassed if windowsize is used. |
100
|
norm |
bool
|
Whether to normalized the gaussian kernel or not. Default is |
True
|
Returns:
Type | Description |
---|---|
(Tsd, TsdFrame, TsdTensor)
|
Time series convolved with a gaussian kernel |
Source code in pynapple/core/time_series.py
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
|
interpolate
Wrapper of the numpy linear interpolation method. See numpy interpolate for an explanation of the parameters. The argument ts should be Ts, Tsd, TsdFrame, TsdTensor to ensure interpolating from sorted timestamps in the right unit,
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ts |
(Ts, Tsd, TsdFrame or TsdTensor)
|
The object holding the timestamps |
required |
ep |
IntervalSet
|
The epochs to use to interpolate. If None, the time support of Tsd is used. |
None
|
left |
None
|
Value to return for ts < tsd[0], default is tsd[0]. |
None
|
right |
None
|
Value to return for ts > tsd[-1], default is tsd[-1]. |
None
|
Source code in pynapple/core/time_series.py
__init__
TsdTensor initializer
Parameters:
Name | Type | Description | Default |
---|---|---|---|
t |
ndarray
|
the time index t |
required |
d |
ndarray
|
The data |
required |
time_units |
str
|
The time units in which times are specified ('us', 'ms', 's' [default]). |
's'
|
time_support |
IntervalSet
|
The time support of the TsdFrame object |
None
|
load_array |
bool
|
Whether the data should be converted to a numpy (or jax) array. Useful when passing a memory map object like zarr.
Default is True. Does not apply if |
True
|
Source code in pynapple/core/time_series.py
save
Save TsdTensor object in npz format. The file will contain the timestamps, the data and the time support.
The main purpose of this function is to save small/medium sized time series objects. For example, you extracted several channels from your recording and filtered them. You can save the filtered channels as a npz to avoid reprocessing it.
You can load the object with nap.load_file
. Keys are 't', 'd', 'start', 'end', 'type'
and 'columns' for columns names.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str
|
The filename |
required |
Examples:
>>> import pynapple as nap
>>> import numpy as np
>>> tsdtensor = nap.TsdTensor(t=np.array([0., 1.]), d = np.zeros((2,3,4)))
>>> tsdtensor.save("my_path/my_tsdtensor.npz")
To load you file, you can use the nap.load_file
function :
Raises:
Type | Description |
---|---|
RuntimeError
|
If filename is not str, path does not exist or filename is a directory. |
Source code in pynapple/core/time_series.py
TsdFrame
Bases: BaseTsd
TsdFrame
Attributes:
Name | Type | Description |
---|---|---|
rate |
float
|
Frequency of the time series (Hz) computed over the time support |
time_support |
IntervalSet
|
The time support of the time series |
Source code in pynapple/core/time_series.py
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 |
|
__setattr__
Object is immutable
Source code in pynapple/core/base_class.py
times
The time index of the object, returned as np.double in the desired time units.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
ndarray
|
the time indexes |
Source code in pynapple/core/base_class.py
start_time
The first time index in the time series object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
float64
|
_ |
Source code in pynapple/core/base_class.py
end_time
The last time index in the time series object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
units |
str
|
('us', 'ms', 's' [default]) |
's'
|
Returns:
Name | Type | Description |
---|---|---|
out |
float64
|
_ |
Source code in pynapple/core/base_class.py
value_from
Replace the value with the closest value from Tsd/TsdFrame/TsdTensor argument
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
(Tsd, TsdFrame or TsdTensor)
|
The object holding the values to replace. |
required |
ep |
IntervalSet(optional)
|
The IntervalSet object to restrict the operation. If None, the time support of the tsd input object is used. |
None
|
Returns:
Name | Type | Description |
---|---|---|
out |
(Tsd, TsdFrame or TsdTensor)
|
Object with the new values |
Examples:
In this example, the ts object will receive the closest values in time from tsd.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100))) # random times
>>> ts = nap.Ts(t=t, time_units='s')
>>> tsd = nap.Tsd(t=np.arange(0,1000), d=np.random.rand(1000), time_units='s')
>>> ep = nap.IntervalSet(start = 0, end = 500, time_units = 's')
The variable ts is a time series object containing only nan. The tsd object containing the values, for example the tracking data, and the epoch to restrict the operation.
newts has the same size of ts restrict to ep.
Source code in pynapple/core/time_series.py
count
Count occurences of events within bin_size or within a set of bins defined as an IntervalSet. You can call this function in multiple ways :
-
tsd.count(bin_size=1, time_units = 'ms') -> Count occurence of events within a 1 ms bin defined on the time support of the object.
-
tsd.count(1, ep=my_epochs) -> Count occurent of events within a 1 second bin defined on the IntervalSet my_epochs.
-
tsd.count(ep=my_bins) -> Count occurent of events within each epoch of the intervalSet object my_bins
-
tsd.count() -> Count occurent of events within each epoch of the time support.
bin_size should be seconds unless specified. If bin_size is used and no epochs is passed, the data will be binned based on the time support of the object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_size |
None or float
|
The bin size (default is second) |
required |
ep |
None or IntervalSet
|
IntervalSet to restrict the operation |
required |
time_units |
str
|
Time units of bin size ('us', 'ms', 's' [default]) |
required |
dtype |
Data type for the count. Default is np.int64. |
None
|
Returns:
Name | Type | Description |
---|---|---|
out |
Tsd
|
A Tsd object indexed by the center of the bins. |
Examples:
This example shows how to count events within bins of 0.1 second.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> ts = nap.Ts(t=t, time_units='s')
>>> bincount = ts.count(0.1)
An epoch can be specified:
>>> ep = nap.IntervalSet(start = 100, end = 800, time_units = 's')
>>> bincount = ts.count(0.1, ep=ep)
And bincount automatically inherit ep as time support:
Source code in pynapple/core/time_series.py
restrict
Restricts a time series object to a set of time intervals delimited by an IntervalSet object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iset |
IntervalSet
|
the IntervalSet object |
required |
Returns:
Type | Description |
---|---|
(Ts, Tsd, TsdFrame or TsdTensor)
|
Tsd object restricted to ep |
Examples:
The Ts object is restrict to the intervals defined by ep.
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> ts = nap.Ts(t=t, time_units='s')
>>> ep = nap.IntervalSet(start=0, end=500, time_units='s')
>>> newts = ts.restrict(ep)
The time support of newts automatically inherit the epochs defined by ep.
Source code in pynapple/core/base_class.py
copy
find_support
find the smallest (to a min_gap resolution) IntervalSet containing all the times in the Tsd
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_gap |
float or int
|
minimal interval between timestamps |
required |
time_units |
str
|
Time units of min gap |
's'
|
Returns:
Type | Description |
---|---|
IntervalSet
|
Description |
Source code in pynapple/core/base_class.py
get
Slice the time series from start
to end
such that all the timestamps satisfy start<=t<=end
.
If end
is None, only the timepoint closest to start
is returned.
By default, the time support doesn't change. If you want to change the time support, use the restrict
function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
float or int
|
The start (or closest time point if |
required |
end |
float or int or None
|
The end |
None
|
Source code in pynapple/core/base_class.py
get_slice
Get a slice object from the time series data based on the start and end values such that all the timestamps satisfy start<=t<=end
.
If end
is None, only the timepoint closest to start
is returned.
By default, the time support doesn't change. If you want to change the time support, use the restrict
function.
This function is equivalent of calling the get
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
int or float
|
The starting value for the slice. |
required |
end |
int or float
|
The ending value for the slice. Defaults to None. |
None
|
time_unit |
str
|
The time unit for the start and end values. Defaults to "s" (seconds). |
's'
|
Returns:
Name | Type | Description |
---|---|---|
slice |
slice
|
A slice determining the start and end indices, with unit step
Slicing the array will be equivalent to calling get: |
Raises:
Type | Description |
---|---|
ValueError
|
|
Examples:
>>> # slice over a range
>>> start, end = 1.2, 2.6
>>> print(ts.get_slice(start, end)) # returns `slice(2, 3, None)`
>>> start, end = 1., 2.
>>> print(ts.get_slice(start, end, mode="forward")) # returns `slice(1, 3, None)`