Skip to content

Ts group

pynapple.core.ts_group

The class TsGroup helps group objects with different timestamps (i.e. timestamps of spikes of a population of neurons).

TsGroup

Bases: UserDict

The TsGroup is a dictionary-like object to hold multiple Ts or Tsd objects with different time index.

Attributes:

Name Type Description
time_support IntervalSet

The time support of the TsGroup

rates Series

The rate of each element of the TsGroup

Source code in pynapple/core/ts_group.py
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
class TsGroup(UserDict):
    """
    The TsGroup is a dictionary-like object to hold multiple [`Ts`][pynapple.core.time_series.Ts] or [`Tsd`][pynapple.core.time_series.Tsd] objects with different time index.

    Attributes
    ----------
    time_support: IntervalSet
        The time support of the TsGroup
    rates : pandas.Series
        The rate of each element of the TsGroup
    """

    def __init__(
        self, data, time_support=None, time_units="s", bypass_check=False, **kwargs
    ):
        """
        TsGroup Initializer.

        Parameters
        ----------
        data : dict or iterable
            Dictionary or iterable of Ts/Tsd objects. The keys should be integer-convertible; if a non-dict iterator is
            passed, its values will be used to create a dict with integer keys.
        time_support : IntervalSet, optional
            The time support of the TsGroup. Ts/Tsd objects will be restricted to the time support if passed.
            If no time support is specified, TsGroup will merge time supports from all the Ts/Tsd objects in data.
        time_units : str, optional
            Time units if data does not contain Ts/Tsd objects ('us', 'ms', 's' [default]).
        bypass_check: bool, optional
            To avoid checking that each element is within time_support.
            Useful to speed up initialization of TsGroup when Ts/Tsd objects have already been restricted beforehand
        **kwargs
            Meta-info about the Ts/Tsd objects. Can be either pandas.Series, numpy.ndarray, list or tuple
            Note that the index should match the index of the input dictionary if pandas Series

        Raises
        ------
        RuntimeError
            Raise error if the union of time support of Ts/Tsd object is empty.
        ValueError
            - If a key cannot be converted to integer.
            - If a key was a floating point with non-negligible decimal part.
            - If the converted keys are not unique, i.e. {1: ts_2, "2": ts_2} is valid,
            {1: ts_2, "1": ts_2}  is invalid.
        """
        # Check input type
        if time_units not in ["s", "ms", "us"]:
            raise ValueError("Argument time_units should be 's', 'ms' or 'us'")
        if not isinstance(bypass_check, bool):
            raise TypeError("Argument bypass_check should be of type bool")
        passed_time_support = False

        if isinstance(time_support, IntervalSet):
            passed_time_support = True
        else:
            if time_support is not None:
                raise TypeError("Argument time_support should be of type IntervalSet")
            else:
                passed_time_support = False

        self._initialized = False

        if not isinstance(data, dict):
            data = dict(enumerate(data))

        # convert all keys to integer
        try:
            keys = [int(k) for k in data.keys()]
        except Exception:
            raise ValueError("All keys must be convertible to integer.")

        # check that there were no floats with decimal points in keys.
        # i.e. 0.5 is not a valid key
        if not all(np.allclose(keys[j], float(k)) for j, k in enumerate(data.keys())):
            raise ValueError("All keys must have integer value!}")

        # check that we have the same num of unique keys
        # {"0":val, 0:val} would be a problem...
        if len(keys) != len(np.unique(keys)):
            raise ValueError("Two dictionary keys contain the same integer value!")

        data = {keys[j]: data[k] for j, k in enumerate(data.keys())}
        self.index = np.sort(keys)
        # Make sure data dict and index are ordered the same
        data = {k: data[k] for k in self.index}

        self._metadata = pd.DataFrame(index=self.index, columns=["rate"], dtype="float")

        # Transform elements to Ts/Tsd objects
        for k in self.index:
            if not isinstance(data[k], Base):
                if isinstance(data[k], list) or is_array_like(data[k]):
                    warnings.warn(
                        "Elements should not be passed as {}. Default time units is seconds when creating the Ts object.".format(
                            type(data[k])
                        ),
                        stacklevel=2,
                    )
                    data[k] = Ts(
                        t=convert_to_numpy_array(data[k], "key {}".format(k)),
                        time_support=time_support,
                        time_units=time_units,
                    )

        # If time_support is passed, all elements of data are restricted prior to init
        if passed_time_support:
            self.time_support = time_support
            if not bypass_check:
                data = {k: data[k].restrict(self.time_support) for k in self.index}
        else:
            # Otherwise do the union of all time supports
            time_support = _union_intervals([data[k].time_support for k in self.index])
            if len(time_support) == 0:
                raise RuntimeError(
                    "Union of time supports is empty. Consider passing a time support as argument."
                )
            self.time_support = time_support
            if not bypass_check:
                data = {k: data[k].restrict(self.time_support) for k in self.index}

        UserDict.__init__(self, data)

        # Making the TsGroup non mutable
        self._initialized = True

        # Trying to add argument as metainfo
        self.set_info(**kwargs)

    """
    Base functions
    """

    def __getattr__(self, name):
        """
        Allows dynamic access to metadata columns as properties.

        Parameters
        ----------
        name : str
            The name of the metadata column to access.

        Returns
        -------
        pandas.Series
            The series of values for the requested metadata column.

        Raises
        ------
        AttributeError
            If the requested attribute is not a metadata column.
        """
        # avoid infinite recursion when pickling due to
        # self._metadata.column having attributes '__reduce__', '__reduce_ex__'
        if name in ("__getstate__", "__setstate__", "__reduce__", "__reduce_ex__"):
            raise AttributeError(name)
        # Check if the requested attribute is part of the metadata
        if name in self._metadata.columns:
            return self._metadata[name]
        else:
            # If the attribute is not part of the metadata, raise AttributeError
            raise AttributeError(
                f"'{type(self).__name__}' object has no attribute '{name}'"
            )

    def __setitem__(self, key, value):
        if not self._initialized:
            self._metadata.loc[int(key), "rate"] = float(value.rate)
            super().__setitem__(int(key), value)
        else:
            if not isinstance(key, str):
                raise ValueError("Metadata keys must be strings!")
            # replicate pandas behavior of over-writing cols
            if key in self._metadata.columns:
                old_meta = self._metadata.copy()
                self._metadata.pop(key)
                try:
                    self.set_info(**{key: value})
                except Exception:
                    self._metadata = old_meta
                    raise
            else:
                self.set_info(**{key: value})

    def __getitem__(self, key):
        # Standard dict keys are Hashable
        if isinstance(key, Hashable):
            if self.__contains__(key):
                return self.data[key]
            elif key in self._metadata.columns:
                return self.get_info(key)
            else:
                raise KeyError(r"Key {} not in group index.".format(key))

        # array boolean are transformed into indices
        # note that raw boolean are hashable, and won't be
        # tsd == tsg.to_tsd()
        elif np.asarray(key).dtype == bool:
            key = np.asarray(key)
            if key.ndim != 1:
                raise IndexError("Only 1-dimensional boolean indices are allowed!")
            if len(key) != self.__len__():
                raise IndexError(
                    "Boolean index length must be equal to the number of Ts in the group! "
                    f"The number of Ts is {self.__len__()}, but the bolean array"
                    f"has length {len(key)} instead!"
                )
            key = self.index[key]

        keys_not_in = list(filter(lambda x: x not in self.index, key))

        if len(keys_not_in):
            raise KeyError(r"Key {} not in group index.".format(keys_not_in))

        return self._ts_group_from_keys(key)

    def _ts_group_from_keys(self, keys):
        metadata = self._metadata.loc[
            np.sort(keys), self._metadata.columns.drop("rate")
        ]
        return TsGroup(
            {k: self[k] for k in keys}, time_support=self.time_support, **metadata
        )

    def __repr__(self):
        col_names = self._metadata.columns.drop("rate")
        headers = ["Index", "rate"] + [c for c in col_names]

        max_cols = 6
        max_rows = 2
        cols, rows = _get_terminal_size()
        max_cols = np.maximum(cols // 12, 6)
        max_rows = np.maximum(rows - 10, 2)

        end_line = []
        lines = []

        def round_if_float(x):
            if isinstance(x, float):
                return np.round(x, 5)
            else:
                return x

        if len(headers) > max_cols:
            headers = headers[0:max_cols] + ["..."]
            end_line.append("...")

        if len(self) > max_rows:
            n_rows = max_rows // 2
            index = self.keys()

            for i in index[0:n_rows]:
                lines.append(
                    [i, np.round(self._metadata.loc[i, "rate"], 5)]
                    + [
                        round_if_float(self._metadata.loc[i, c])
                        for c in col_names[0 : max_cols - 2]
                    ]
                    + end_line
                )
            lines.append(["..." for _ in range(len(headers))])
            for i in index[-n_rows:]:
                lines.append(
                    [i, np.round(self._metadata.loc[i, "rate"], 5)]
                    + [
                        round_if_float(self._metadata.loc[i, c])
                        for c in col_names[0 : max_cols - 2]
                    ]
                    + end_line
                )
        else:
            for i in self.data.keys():
                lines.append(
                    [i, np.round(self._metadata.loc[i, "rate"], 5)]
                    + [
                        round_if_float(self._metadata.loc[i, c])
                        for c in col_names[0 : max_cols - 2]
                    ]
                    + end_line
                )

        return tabulate(lines, headers=headers)

    def __str__(self):
        return self.__repr__()

    def keys(self):
        """
        Return index/keys of TsGroup

        Returns
        -------
        list
            List of keys
        """
        return list(self.data.keys())

    def items(self):
        """
        Return a list of key/object.

        Returns
        -------
        list
            List of tuples
        """
        return list(self.data.items())

    def values(self):
        """
        Return a list of all the Ts/Tsd objects in the TsGroup

        Returns
        -------
        list
            List of Ts/Tsd objects
        """
        return list(self.data.values())

    @property
    def rates(self):
        """
        Return the rates of each element of the group in Hz
        """
        return self._metadata["rate"]

    #######################
    # Metadata
    #######################

    @property
    def metadata_columns(self):
        """
        Returns list of metadata columns
        """
        return list(self._metadata.columns)

    def _check_metadata_column_names(self, *args, **kwargs):
        invalid_cols = []
        for arg in args:
            if isinstance(arg, pd.DataFrame):
                invalid_cols += [col for col in arg.columns if hasattr(self, col)]

        for k, v in kwargs.items():
            if isinstance(v, (list, numpy.ndarray, pd.Series)) and hasattr(self, k):
                invalid_cols += [k]

        if invalid_cols:
            raise ValueError(
                f"Invalid metadata name(s) {invalid_cols}. Metadata name must differ from "
                f"TsGroup attribute names!"
            )

    def set_info(self, *args, **kwargs):
        """
        Add metadata information about the TsGroup.
        Metadata are saved as a DataFrame.

        Parameters
        ----------
        *args
            pandas.Dataframe or list of pandas.DataFrame
        **kwargs
            Can be either pandas.Series, numpy.ndarray, list or tuple

        Raises
        ------
        RuntimeError
            Raise an error if
                no column labels are found when passing simple arguments,
                indexes are not equals for a pandas series,+
                not the same length when passing numpy array.
        TypeError
            If some of the provided metadata could not be set.

        Examples
        --------
        >>> import pynapple as nap
        >>> import numpy as np
        >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
        1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
        2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
        }
        >>> tsgroup = nap.TsGroup(tmp)

        To add metadata with a pandas.DataFrame:

        >>> import pandas as pd
        >>> structs = pd.DataFrame(index = [0,1,2], data=['pfc','pfc','ca1'], columns=['struct'])
        >>> tsgroup.set_info(structs)
        >>> tsgroup
          Index    Freq. (Hz)  struct
        -------  ------------  --------
              0             1  pfc
              1             2  pfc
              2             4  ca1

        To add metadata with a pd.Series, numpy.ndarray, list or tuple:

        >>> hd = pd.Series(index = [0,1,2], data = [0,1,1])
        >>> tsgroup.set_info(hd=hd)
        >>> tsgroup
          Index    Freq. (Hz)  struct      hd
        -------  ------------  --------  ----
              0             1  pfc          0
              1             2  pfc          1
              2             4  ca1          1

        """
        # check for duplicate names, otherwise "self.metadata_name"
        # syntax would behave unexpectedly.
        self._check_metadata_column_names(*args, **kwargs)
        not_set = []
        if len(args):
            for arg in args:
                if isinstance(arg, pd.DataFrame):
                    if pd.Index.equals(self._metadata.index, arg.index):
                        self._metadata = self._metadata.join(arg)
                    else:
                        raise RuntimeError("Index are not equals")
                elif isinstance(arg, (pd.Series, np.ndarray, list)):
                    raise RuntimeError("Argument should be passed as keyword argument.")
                else:
                    not_set.append(arg)
        if len(kwargs):
            for k, v in kwargs.items():
                if isinstance(v, pd.Series):
                    if pd.Index.equals(self._metadata.index, v.index):
                        self._metadata[k] = v
                    else:
                        raise RuntimeError(
                            "Index are not equals for argument {}".format(k)
                        )
                elif isinstance(v, (np.ndarray, list, tuple)):
                    if len(self._metadata) == len(v):
                        self._metadata[k] = np.asarray(v)
                    else:
                        raise RuntimeError("Array is not the same length.")
                else:
                    not_set.append({k: v})
        if not_set:
            raise TypeError(
                f"Cannot set the following metadata:\n{not_set}.\nMetadata columns provided must be  "
                f"of type `panda.Series`, `tuple`, `list`, or `numpy.ndarray`."
            )

    def get_info(self, key):
        """
        Returns the metainfo located in one column.
        The key for the column frequency is "rate".

        Parameters
        ----------
        key : str
            One of the metainfo columns name

        Returns
        -------
        pandas.Series
            The metainfo
        """
        if key in ["freq", "frequency"]:
            key = "rate"
        return self._metadata[key]

    #################################
    # Generic functions of Tsd objects
    #################################
    def restrict(self, ep):
        """
        Restricts a TsGroup object to a set of time intervals delimited by an IntervalSet object

        Parameters
        ----------
        ep : IntervalSet
            the IntervalSet object

        Returns
        -------
        TsGroup
            TsGroup object restricted to ep

        Examples
        --------
        >>> import pynapple as nap
        >>> import numpy as np
        >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
        1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
        2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
        }
        >>> tsgroup = nap.TsGroup(tmp)
        >>> ep = nap.IntervalSet(start=0, end=100, time_units='s')
        >>> newtsgroup = tsgroup.restrict(ep)

        All objects within the TsGroup automatically inherit the epochs defined by ep.

        >>> newtsgroup.time_support
           start    end
        0    0.0  100.0
        >>> newtsgroup[0].time_support
           start    end
        0    0.0  100.0
        """
        newgr = {}
        for k in self.index:
            newgr[k] = self.data[k].restrict(ep)
        cols = self._metadata.columns.drop("rate")

        return TsGroup(
            newgr, time_support=ep, bypass_check=True, **self._metadata[cols]
        )

    def value_from(self, tsd, ep=None):
        """
        Replace the value of each Ts/Tsd object within the Ts group with the closest value from tsd argument

        Parameters
        ----------
        tsd : Tsd
            The Tsd object holding the values to replace
        ep : IntervalSet
            The IntervalSet object to restrict the operation.
            If None, the time support of the tsd input object is used.

        Returns
        -------
        TsGroup
            TsGroup object with the new values

        Examples
        --------
        >>> import pynapple as nap
        >>> import numpy as np
        >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
        1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
        2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
        }
        >>> tsgroup = nap.TsGroup(tmp)
        >>> ep = nap.IntervalSet(start=0, end=100, time_units='s')

        The variable tsd is a time series object containing the values to assign, for example the tracking data:

        >>> tsd = nap.Tsd(t=np.arange(0,100), d=np.random.rand(100), time_units='s')
        >>> ep = nap.IntervalSet(start = 0, end = 100, time_units = 's')
        >>> newtsgroup = tsgroup.value_from(tsd, ep)

        """
        if ep is None:
            ep = tsd.time_support

        newgr = {}
        for k in self.data:
            newgr[k] = self.data[k].value_from(tsd, ep)

        cols = self._metadata.columns.drop("rate")
        return TsGroup(newgr, time_support=ep, **self._metadata[cols])

    def count(self, *args, dtype=None, **kwargs):
        """
        Count occurences of events within bin_size or within a set of bins defined as an IntervalSet.
        You can call this function in multiple ways :

        1. *tsgroup.count(bin_size=1, time_units = 'ms')*
        -> Count occurence of events within a 1 ms bin defined on the time support of the object.

        2. *tsgroup.count(1, ep=my_epochs)*
        -> Count occurent of events within a 1 second bin defined on the IntervalSet my_epochs.

        3. *tsgroup.count(ep=my_bins)*
        -> Count occurent of events within each epoch of the intervalSet object my_bins

        4. *tsgroup.count()*
        -> Count occurent of events within each epoch of the time support.

        bin_size should be seconds unless specified.
        If bin_size is used and no epochs is passed, the data will be binned based on the time support of the object.

        Parameters
        ----------
        bin_size : None or float, optional
            The bin size (default is second)
        ep : None or IntervalSet, optional
            IntervalSet to restrict the operation
        time_units : str, optional
            Time units of bin size ('us', 'ms', 's' [default])
        dtype: type, optional
            Data type for the count. Default is np.int64.

        Returns
        -------
        out: TsdFrame
            A TsdFrame with the columns being the index of each item in the TsGroup.

        Examples
        --------
        This example shows how to count events within bins of 0.1 second for the first 100 seconds.

        >>> import pynapple as nap
        >>> import numpy as np
        >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
        1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
        2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
        }
        >>> tsgroup = nap.TsGroup(tmp)
        >>> ep = nap.IntervalSet(start=0, end=100, time_units='s')
        >>> bincount = tsgroup.count(0.1, ep)
        >>> bincount
                  0  1  2
        Time (s)
        0.05      0  0  0
        0.15      0  0  0
        0.25      0  0  1
        0.35      0  0  0
        0.45      0  0  0
        ...      .. .. ..
        99.55     0  1  1
        99.65     0  0  0
        99.75     0  0  1
        99.85     0  0  0
        99.95     1  1  1
        [1000 rows x 3 columns]

        """
        bin_size = None
        if "bin_size" in kwargs:
            bin_size = kwargs["bin_size"]
            if isinstance(bin_size, int):
                bin_size = float(bin_size)
            if not isinstance(bin_size, float):
                raise ValueError("bin_size argument should be float.")
        else:
            for a in args:
                if isinstance(a, (float, int)):
                    bin_size = float(a)

        time_units = "s"
        if "time_units" in kwargs:
            time_units = kwargs["time_units"]
            if not isinstance(time_units, str):
                raise ValueError("time_units argument should be 's', 'ms' or 'us'.")
        else:
            for a in args:
                if isinstance(a, str) and a in ["s", "ms", "us"]:
                    time_units = a

        ep = self.time_support
        if "ep" in kwargs:
            ep = kwargs["ep"]
            if not isinstance(ep, IntervalSet):
                raise ValueError("ep argument should be IntervalSet")
        else:
            for a in args:
                if isinstance(a, IntervalSet):
                    ep = a

        if dtype:
            try:
                dtype = np.dtype(dtype)
            except Exception:
                raise ValueError(f"{dtype} is not a valid numpy dtype.")

        starts = ep.start
        ends = ep.end

        if isinstance(bin_size, (float, int)):
            bin_size = float(bin_size)
            bin_size = TsIndex.format_timestamps(np.array([bin_size]), time_units)[0]

        # Call it on first element to pre-allocate the array
        if len(self) >= 1:
            time_index, d = _count(
                self.data[self.index[0]].index.values,
                starts,
                ends,
                bin_size,
                dtype=dtype,
            )

            count = np.zeros((len(time_index), len(self.index)), dtype=dtype)
            count[:, 0] = d

            for i in range(1, len(self.index)):
                count[:, i] = _count(
                    self.data[self.index[i]].index.values,
                    starts,
                    ends,
                    bin_size,
                    dtype=dtype,
                )[1]

            return TsdFrame(t=time_index, d=count, time_support=ep, columns=self.index)
        else:
            time_index, _ = _count(np.array([]), starts, ends, bin_size, dtype=dtype)
            return TsdFrame(
                t=time_index, d=np.empty((len(time_index), 0)), time_support=ep
            )

    def to_tsd(self, *args):
        """
        Convert TsGroup to a Tsd. The timestamps of the TsGroup are merged together and sorted.

        Parameters
        ----------
        *args
            string, list, numpy.ndarray or pandas.Series

        Examples
        --------
        >>> import pynapple as nap
        >>> import numpy as np
        >>> tsgroup = nap.TsGroup({0:nap.Ts(t=np.array([0, 1])), 5:nap.Ts(t=np.array([2, 3]))})
        Index    rate
        -------  ------
        0       1
        5       1

        By default, the values of the Tsd is the index of the timestamp in the TsGroup:

        >>> tsgroup.to_tsd()
        Time (s)
        0.0    0.0
        1.0    0.0
        2.0    5.0
        3.0    5.0
        dtype: float64

        Values can be inherited from the metadata of the TsGroup by giving the key of the corresponding columns.

        >>> tsgroup.set_info( phase=np.array([np.pi, 2*np.pi]) ) # assigning a phase to my 2 elements of the TsGroup
        >>> tsgroup.to_tsd("phase")
        Time (s)
        0.0    3.141593
        1.0    3.141593
        2.0    6.283185
        3.0    6.283185
        dtype: float64

        Values can also be passed directly to the function from a list, numpy.ndarray or pandas.Series of values as long as the length matches :

        >>> tsgroup.to_tsd([-1, 1])
        Time (s)
        0.0   -1.0
        1.0   -1.0
        2.0    1.0
        3.0    1.0
        dtype: float64

        The reverse operation can be done with the Tsd.to_tsgroup function :

        >>> my_tsd
        Time (s)
        0.0    0.0
        1.0    0.0
        2.0    5.0
        3.0    5.0
        dtype: float64
        >>> my_tsd.to_tsgroup()
          Index    rate
        -------  ------
              0       1
              5       1

        Returns
        -------
        Tsd

        Raises
        ------
        RuntimeError
            "Index are not equals" : if pandas.Series indexes don't match the TsGroup indexes
            "Values is not the same length" : if numpy.ndarray/list object is not the same size as the TsGroup object
            "Key not in metadata of TsGroup" : if string argument does not match any column names of the metadata,
            "Unknown argument format" ; if argument is not a string, list, numpy.ndarray or pandas.Series

        """
        if len(args):
            if isinstance(args[0], pd.Series):
                if pd.Index.equals(self._metadata.index, args[0].index):
                    _values = args[0].values.flatten()
                else:
                    raise RuntimeError("Index are not equals")
            elif isinstance(args[0], (np.ndarray, list)):
                if len(self._metadata) == len(args[0]):
                    _values = np.array(args[0])
                else:
                    raise RuntimeError("Values is not the same length.")
            elif isinstance(args[0], str):
                if args[0] in self._metadata.columns:
                    _values = self._metadata[args[0]].values
                else:
                    raise RuntimeError(
                        "Key {} not in metadata of TsGroup".format(args[0])
                    )
            else:
                possible_keys = []
                for k, d in self._metadata.dtypes.items():
                    if "int" in str(d) or "float" in str(d):
                        possible_keys.append(k)
                raise RuntimeError(
                    "Unknown argument format. Must be pandas.Series, numpy.ndarray or a string from one of the following values : [{}]".format(
                        ", ".join(possible_keys)
                    )
                )
        else:
            _values = self.index

        nt = 0
        for n in self.index:
            nt += len(self[n])

        times = np.zeros(nt)
        data = np.zeros(nt)
        k = 0
        for n, v in zip(self.index, _values):
            kl = len(self[n])
            times[k : k + kl] = self[n].index
            data[k : k + kl] = v
            k += kl

        idx = np.argsort(times)
        toreturn = Tsd(t=times[idx], d=data[idx], time_support=self.time_support)

        return toreturn

    def get(self, start, end=None, time_units="s"):
        """Slice the `TsGroup` object from `start` to `end` such that all the timestamps within the group satisfy `start<=t<=end`.
        If `end` is None, only the timepoint closest to `start` is returned.

        By default, the time support doesn't change. If you want to change the time support, use the `restrict` function.

        Parameters
        ----------
        start : float or int
            The start (or closest time point if `end` is None)
        end : float or int or None
            The end
        """
        newgr = {}
        for k in self.index:
            newgr[k] = self.data[k].get(start, end, time_units)
        cols = self._metadata.columns.drop("rate")

        return TsGroup(
            newgr,
            time_support=self.time_support,
            bypass_check=True,
            **self._metadata[cols],
        )

    #################################
    # Special slicing of metadata
    #################################

    def getby_threshold(self, key, thr, op=">"):
        """
        Return a TsGroup with all Ts/Tsd objects with values above threshold for metainfo under key.

        Parameters
        ----------
        key : str
            One of the metainfo columns name
        thr : float
            THe value for thresholding
        op : str, optional
            The type of operation. Possibilities are '>', '<', '>=' or '<='.

        Returns
        -------
        TsGroup
            The new TsGroup

        Raises
        ------
        RuntimeError
            Raise eror is operation is not recognized.

        Examples
        --------
        >>> import pynapple as nap
        >>> import numpy as np
        >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
        1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
        2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
        }
        >>> tsgroup = nap.TsGroup(tmp)
          Index    Freq. (Hz)
        -------  ------------
              0             1
              1             2
              2             4

        This exemple shows how to get a new TsGroup with all elements for which the metainfo frequency is above 1.
        >>> newtsgroup = tsgroup.getby_threshold('freq', 1, op = '>')
          Index    Freq. (Hz)
        -------  ------------
              1             2
              2             4

        """
        if op == ">":
            ix = list(self._metadata.index[self._metadata[key] > thr])
            return self[ix]
        elif op == "<":
            ix = list(self._metadata.index[self._metadata[key] < thr])
            return self[ix]
        elif op == ">=":
            ix = list(self._metadata.index[self._metadata[key] >= thr])
            return self[ix]
        elif op == "<=":
            ix = list(self._metadata.index[self._metadata[key] <= thr])
            return self[ix]
        else:
            raise RuntimeError("Operation {} not recognized.".format(op))

    def getby_intervals(self, key, bins):
        """
        Return a list of TsGroup binned.

        Parameters
        ----------
        key : str
            One of the metainfo columns name
        bins : numpy.ndarray or list
            The bin intervals

        Returns
        -------
        list
            A list of TsGroup

        Examples
        --------
        >>> import pynapple as nap
        >>> import numpy as np
        >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
        1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
        2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
        }
        >>> tsgroup = nap.TsGroup(tmp, alpha = np.arange(3))
          Index    Freq. (Hz)    alpha
        -------  ------------  -------
              0             1        0
              1             2        1
              2             4        2

        This exemple shows how to bin the TsGroup according to one metainfo key.
        >>> newtsgroup, bincenter = tsgroup.getby_intervals('alpha', [0, 1, 2])
        >>> newtsgroup
        [  Index    Freq. (Hz)    alpha
         -------  ------------  -------
               0             1        0,
           Index    Freq. (Hz)    alpha
         -------  ------------  -------
               1             2        1]

        By default, the function returns the center of the bins.
        >>> bincenter
        array([0.5, 1.5])
        """
        idx = np.digitize(self._metadata[key], bins) - 1
        groups = self._metadata.index.groupby(idx)
        ix = np.unique(list(groups.keys()))
        ix = ix[ix >= 0]
        ix = ix[ix < len(bins) - 1]
        xb = bins[0:-1] + np.diff(bins) / 2
        sliced = [self[list(groups[i])] for i in ix]
        return sliced, xb[ix]

    def getby_category(self, key):
        """
        Return a list of TsGroup grouped by category.

        Parameters
        ----------
        key : str
            One of the metainfo columns name

        Returns
        -------
        dict
            A dictionary of TsGroup

        Examples
        --------
        >>> import pynapple as nap
        >>> import numpy as np
        >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
        1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
        2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
        }
        >>> tsgroup = nap.TsGroup(tmp, group = [0,1,1])
          Index    Freq. (Hz)    group
        -------  ------------  -------
              0             1        0
              1             2        1
              2             4        1

        This exemple shows how to group the TsGroup according to one metainfo key.
        >>> newtsgroup = tsgroup.getby_category('group')
        >>> newtsgroup
        {0:   Index    Freq. (Hz)    group
         -------  ------------  -------
               0             1        0,
         1:   Index    Freq. (Hz)    group
         -------  ------------  -------
               1             2        1
               2             4        1}
        """
        groups = self._metadata.groupby(key).groups
        sliced = {k: self[list(groups[k])] for k in groups.keys()}
        return sliced

    @staticmethod
    def merge_group(
        *tsgroups, reset_index=False, reset_time_support=False, ignore_metadata=False
    ):
        """
        Merge multiple TsGroup objects into a single TsGroup object.

        Parameters
        ----------
        *tsgroups : TsGroup
            The TsGroup objects to merge
        reset_index : bool, optional
            If True, the keys will be reset to range(len(data))
            If False, the keys of the TsGroup objects should be non-overlapping and will be preserved
        reset_time_support : bool, optional
            If True, the merged TsGroup will merge time supports from all the Ts/Tsd objects in data
            If False, the time support of the TsGroup objects should be the same and will be preserved
        ignore_metadata : bool, optional
            If True, the merged TsGroup will not have any metadata columns other than 'rate'
            If False, all metadata columns should be the same and all metadata will be concatenated

        Returns
        -------
        TsGroup
            A TsGroup of merged objects

        Raises
        ------
        TypeError
            If the input objects are not TsGroup objects
        ValueError
            If `ignore_metadata=False` but metadata columns are not the same
            If `reset_index=False` but keys overlap
            If `reset_time_support=False` but time supports are not the same

        """
        is_tsgroup = [isinstance(tsg, TsGroup) for tsg in tsgroups]
        if not all(is_tsgroup):
            not_tsgroup_index = [i + 1 for i, boo in enumerate(is_tsgroup) if not boo]
            raise TypeError(f"Input at positions {not_tsgroup_index} are not TsGroup!")

        if len(tsgroups) == 1:
            print("Only one TsGroup object provided, no merge needed.")
            return tsgroups[0]

        tsg1 = tsgroups[0]
        items = tsg1.items()
        keys = set(tsg1.keys())
        metadata = tsg1._metadata

        for i, tsg in enumerate(tsgroups[1:]):
            if not ignore_metadata:
                if tsg1.metadata_columns != tsg.metadata_columns:
                    raise ValueError(
                        f"TsGroup at position {i+2} has different metadata columns from previous TsGroup objects. "
                        "Set `ignore_metadata=True` to bypass the check."
                    )
                metadata = pd.concat([metadata, tsg._metadata], axis=0)

            if not reset_index:
                key_overlap = keys.intersection(tsg.keys())
                if key_overlap:
                    raise ValueError(
                        f"TsGroup at position {i+2} has overlapping keys {key_overlap} with previous TsGroup objects. "
                        "Set `reset_index=True` to bypass the check."
                    )
                keys.update(tsg.keys())

            if reset_time_support:
                time_support = None
            else:
                if not np.allclose(
                    tsg1.time_support.as_units("s").to_numpy(),
                    tsg.time_support.as_units("s").to_numpy(),
                    atol=10 ** (-nap_config.time_index_precision),
                    rtol=0,
                ):
                    raise ValueError(
                        f"TsGroup at position {i+2} has different time support from previous TsGroup objects. "
                        "Set `reset_time_support=True` to bypass the check."
                    )
                time_support = tsg1.time_support

            items.extend(tsg.items())

        if reset_index:
            metadata.index = range(len(metadata))
            data = {i: ts[1] for i, ts in enumerate(items)}
        else:
            data = dict(items)

        if ignore_metadata:
            return TsGroup(data, time_support=time_support, bypass_check=False)
        else:
            cols = metadata.columns.drop("rate")
            return TsGroup(
                data, time_support=time_support, bypass_check=False, **metadata[cols]
            )

    def merge(
        self,
        *tsgroups,
        reset_index=False,
        reset_time_support=False,
        ignore_metadata=False,
    ):
        """
        Merge the TsGroup object with other TsGroup objects.
        Common uses include adding more neurons/channels (supposing each Ts/Tsd corresponds to data from a neuron/channel) or adding more trials (supposing each Ts/Tsd corresponds to data from a trial).

        Parameters
        ----------
        *tsgroups : TsGroup
            The TsGroup objects to merge with
        reset_index : bool, optional
            If True, the keys will be reset to range(len(data))
            If False, the keys of the TsGroup objects should be non-overlapping and will be preserved
        reset_time_support : bool, optional
            If True, the merged TsGroup will merge time supports from all the Ts/Tsd objects in data
            If False, the time support of the TsGroup objects should be the same and will be preserved
        ignore_metadata : bool, optional
            If True, the merged TsGroup will not have any metadata columns other than 'rate'
            If False, all metadata columns should be the same and all metadata will be concatenated

        Returns
        -------
        TsGroup
            A TsGroup of merged objects

        Raises
        ------
        TypeError
            If the input objects are not TsGroup objects
        ValueError
            If `ignore_metadata=False` but metadata columns are not the same
            If `reset_index=False` but keys overlap
            If `reset_time_support=False` but time supports are not the same

        Examples
        --------

        >>> import pynapple as nap
        >>> time_support_a = nap.IntervalSet(start=-1, end=1, time_units='s')
        >>> time_support_b = nap.IntervalSet(start=-5, end=5, time_units='s')

        >>> dict1 = {0: nap.Ts(t=[-1, 0, 1], time_units='s')}
        >>> tsgroup1 = nap.TsGroup(dict1, time_support=time_support_a)

        >>> dict2 = {10: nap.Ts(t=[-1, 0, 1], time_units='s')}
        >>> tsgroup2 = nap.TsGroup(dict2, time_support=time_support_a)

        >>> dict3 = {0: nap.Ts(t=[-.1, 0, .1], time_units='s')}
        >>> tsgroup3 = nap.TsGroup(dict3, time_support=time_support_a)

        >>> dict4 = {10: nap.Ts(t=[-1, 0, 1], time_units='s')}
        >>> tsgroup4 = nap.TsGroup(dict2, time_support=time_support_b)

        Merge with default options if have the same time support and non-overlapping indexes:

        >>> tsgroup_12 = tsgroup1.merge(tsgroup2)
        >>> tsgroup_12
        Index    rate
        -------  ------
             0     1.5
            10     1.5

        Set `reset_index=True` if indexes are overlapping:

        >>> tsgroup_13 = tsgroup1.merge(tsgroup3, reset_index=True)
        >>> tsgroup_13
        Index    rate
        -------  ------
              0     1.5
              1     1.5

        Set `reset_time_support=True` if time supports are different:

        >>> tsgroup_14 = tsgroup1.merge(tsgroup4, reset_time_support=True)
        >>> tsgroup_14
        >>> tsgroup_14.time_support
        Index    rate
        -------  ------
              0     0.3
             10     0.3

                    start    end
            0       -5      5
            shape: (1, 2), time unit: sec.

        See Also
        --------
        [`TsGroup.merge_group`](./#pynapple.core.ts_group.TsGroup.merge_group)
        """
        return TsGroup.merge_group(
            self,
            *tsgroups,
            reset_index=reset_index,
            reset_time_support=reset_time_support,
            ignore_metadata=ignore_metadata,
        )

    def save(self, filename):
        """
        Save TsGroup object in npz format. The file will contain the timestamps,
        the data (if group of Tsd), group index, the time support and the metadata

        The main purpose of this function is to save small/medium sized TsGroup
        objects.

        The function will "flatten" the TsGroup by sorting all the timestamps
        and assigning to each the corresponding index. Typically, a TsGroup like
        this :

        ``` py
        TsGroup({
            0 : Tsd(t=[0, 2, 4], d=[1, 2, 3])
            1 : Tsd(t=[1, 5], d=[5, 6])
        })
        ```

        will be saved as npz with the following keys:

        ``` py
        {
            't' : [0, 1, 2, 4, 5],
            'd' : [1, 5, 2, 3, 5],
            'index' : [0, 1, 0, 0, 1],
            'start' : [0],
            'end' : [5],
            'keys' : [0, 1],
            'type' : 'TsGroup'
        }
        ```

        Metadata are saved by columns with the column name as the npz key. To avoid
        potential conflicts, make sure the columns name of the metadata are different
        from ['t', 'd', 'start', 'end', 'index', 'keys']

        You can load the object with `nap.load_file`. Default keys are 't', 'd'(optional),
        'start', 'end', 'index', 'keys' and 'type'.
        See the example below.

        Parameters
        ----------
        filename : str
            The filename

        Examples
        --------
        >>> import pynapple as nap
        >>> import numpy as np
        >>> tsgroup = nap.TsGroup({
            0 : nap.Ts(t=np.array([0.0, 2.0, 4.0])),
            6 : nap.Ts(t=np.array([1.0, 5.0]))
            },
            group = np.array([0, 1]),
            location = np.array(['right foot', 'left foot'])
            )
        >>> tsgroup
          Index    rate    group  location
        -------  ------  -------  ----------
              0     0.6        0  right foot
              6     0.4        1  left foot
        >>> tsgroup.save("my_tsgroup.npz")

        To get back to pynapple, you can use the `nap.load_file` function :

        >>> tsgroup = nap.load_file("my_tsgroup.npz")
        >>> tsgroup
          Index    rate    group  location
        -------  ------  -------  ----------
              0     0.6        0  right foot
              6     0.4        1  left foot

        Raises
        ------
        RuntimeError
            If filename is not str, path does not exist or filename is a directory.
        """
        filename = check_filename(filename)

        dicttosave = {"type": np.array(["TsGroup"], dtype=np.str_)}
        for k in self._metadata.columns:
            if k not in ["t", "d", "start", "end", "index", "keys"]:
                tmp = self._metadata[k].values
                if tmp.dtype == np.dtype("O"):
                    tmp = tmp.astype(np.str_)
                dicttosave[k] = tmp

        # We can't use to_tsd here in case tsgroup contains Tsd and not only Ts.
        nt = 0
        for n in self.index:
            nt += len(self[n])

        times = np.zeros(nt)
        data = np.full(nt, np.nan)
        index = np.zeros(nt, dtype=np.int64)
        k = 0
        for n in self.index:
            kl = len(self[n])
            times[k : k + kl] = self[n].index
            if isinstance(self[n], BaseTsd):
                data[k : k + kl] = self[n].values
            index[k : k + kl] = int(n)
            k += kl

        idx = np.argsort(times)
        times = times[idx]
        index = index[idx]

        dicttosave["t"] = times
        dicttosave["index"] = index
        if not np.all(np.isnan(data)):
            dicttosave["d"] = data[idx]
        dicttosave["keys"] = np.array(self.keys())
        dicttosave["start"] = self.time_support.start
        dicttosave["end"] = self.time_support.end

        np.savez(filename, **dicttosave)

        return

    @classmethod
    def _from_npz_reader(cls, file):
        """
        Load a Tsd object from a npz file.

        Parameters
        ----------
        file : str
            The opened npz file

        Returns
        -------
        Tsd
            The Tsd object
        """

        times = file["t"]
        index = file["index"]
        has_data = "d" in file.keys()
        time_support = IntervalSet(file["start"], file["end"])

        if has_data:
            data = file["data"]

        if "keys" in file.keys():
            keys = file["keys"]
        else:
            keys = np.unique(index)

        group = {}
        for key in keys:
            filtering_index = index == key
            t = times[filtering_index]

            if has_data:
                group[key] = Tsd(
                    t=t,
                    d=data[filtering_index],
                    time_support=time_support,
                )
            else:
                group[key] = Ts(t=t, time_support=time_support)

        tsgroup = cls(group, time_support=time_support, bypass_check=True)

        metainfo = {}
        not_info_keys = {"start", "end", "t", "index", "d", "rate", "keys"}

        for k in set(file.keys()) - not_info_keys:
            tmp = file[k]
            if len(tmp) == len(tsgroup):
                metainfo[k] = tmp

        tsgroup.set_info(**metainfo)
        return tsgroup

rates property

rates

Return the rates of each element of the group in Hz

metadata_columns property

metadata_columns

Returns list of metadata columns

__init__

__init__(
    data,
    time_support=None,
    time_units="s",
    bypass_check=False,
    **kwargs
)

TsGroup Initializer.

Parameters:

Name Type Description Default
data dict or iterable

Dictionary or iterable of Ts/Tsd objects. The keys should be integer-convertible; if a non-dict iterator is passed, its values will be used to create a dict with integer keys.

required
time_support IntervalSet

The time support of the TsGroup. Ts/Tsd objects will be restricted to the time support if passed. If no time support is specified, TsGroup will merge time supports from all the Ts/Tsd objects in data.

None
time_units str

Time units if data does not contain Ts/Tsd objects ('us', 'ms', 's' [default]).

's'
bypass_check

To avoid checking that each element is within time_support. Useful to speed up initialization of TsGroup when Ts/Tsd objects have already been restricted beforehand

False
**kwargs

Meta-info about the Ts/Tsd objects. Can be either pandas.Series, numpy.ndarray, list or tuple Note that the index should match the index of the input dictionary if pandas Series

{}

Raises:

Type Description
RuntimeError

Raise error if the union of time support of Ts/Tsd object is empty.

ValueError
  • If a key cannot be converted to integer.
  • If a key was a floating point with non-negligible decimal part.
  • If the converted keys are not unique, i.e. {1: ts_2, "2": ts_2} is valid, {1: ts_2, "1": ts_2} is invalid.
Source code in pynapple/core/ts_group.py
def __init__(
    self, data, time_support=None, time_units="s", bypass_check=False, **kwargs
):
    """
    TsGroup Initializer.

    Parameters
    ----------
    data : dict or iterable
        Dictionary or iterable of Ts/Tsd objects. The keys should be integer-convertible; if a non-dict iterator is
        passed, its values will be used to create a dict with integer keys.
    time_support : IntervalSet, optional
        The time support of the TsGroup. Ts/Tsd objects will be restricted to the time support if passed.
        If no time support is specified, TsGroup will merge time supports from all the Ts/Tsd objects in data.
    time_units : str, optional
        Time units if data does not contain Ts/Tsd objects ('us', 'ms', 's' [default]).
    bypass_check: bool, optional
        To avoid checking that each element is within time_support.
        Useful to speed up initialization of TsGroup when Ts/Tsd objects have already been restricted beforehand
    **kwargs
        Meta-info about the Ts/Tsd objects. Can be either pandas.Series, numpy.ndarray, list or tuple
        Note that the index should match the index of the input dictionary if pandas Series

    Raises
    ------
    RuntimeError
        Raise error if the union of time support of Ts/Tsd object is empty.
    ValueError
        - If a key cannot be converted to integer.
        - If a key was a floating point with non-negligible decimal part.
        - If the converted keys are not unique, i.e. {1: ts_2, "2": ts_2} is valid,
        {1: ts_2, "1": ts_2}  is invalid.
    """
    # Check input type
    if time_units not in ["s", "ms", "us"]:
        raise ValueError("Argument time_units should be 's', 'ms' or 'us'")
    if not isinstance(bypass_check, bool):
        raise TypeError("Argument bypass_check should be of type bool")
    passed_time_support = False

    if isinstance(time_support, IntervalSet):
        passed_time_support = True
    else:
        if time_support is not None:
            raise TypeError("Argument time_support should be of type IntervalSet")
        else:
            passed_time_support = False

    self._initialized = False

    if not isinstance(data, dict):
        data = dict(enumerate(data))

    # convert all keys to integer
    try:
        keys = [int(k) for k in data.keys()]
    except Exception:
        raise ValueError("All keys must be convertible to integer.")

    # check that there were no floats with decimal points in keys.
    # i.e. 0.5 is not a valid key
    if not all(np.allclose(keys[j], float(k)) for j, k in enumerate(data.keys())):
        raise ValueError("All keys must have integer value!}")

    # check that we have the same num of unique keys
    # {"0":val, 0:val} would be a problem...
    if len(keys) != len(np.unique(keys)):
        raise ValueError("Two dictionary keys contain the same integer value!")

    data = {keys[j]: data[k] for j, k in enumerate(data.keys())}
    self.index = np.sort(keys)
    # Make sure data dict and index are ordered the same
    data = {k: data[k] for k in self.index}

    self._metadata = pd.DataFrame(index=self.index, columns=["rate"], dtype="float")

    # Transform elements to Ts/Tsd objects
    for k in self.index:
        if not isinstance(data[k], Base):
            if isinstance(data[k], list) or is_array_like(data[k]):
                warnings.warn(
                    "Elements should not be passed as {}. Default time units is seconds when creating the Ts object.".format(
                        type(data[k])
                    ),
                    stacklevel=2,
                )
                data[k] = Ts(
                    t=convert_to_numpy_array(data[k], "key {}".format(k)),
                    time_support=time_support,
                    time_units=time_units,
                )

    # If time_support is passed, all elements of data are restricted prior to init
    if passed_time_support:
        self.time_support = time_support
        if not bypass_check:
            data = {k: data[k].restrict(self.time_support) for k in self.index}
    else:
        # Otherwise do the union of all time supports
        time_support = _union_intervals([data[k].time_support for k in self.index])
        if len(time_support) == 0:
            raise RuntimeError(
                "Union of time supports is empty. Consider passing a time support as argument."
            )
        self.time_support = time_support
        if not bypass_check:
            data = {k: data[k].restrict(self.time_support) for k in self.index}

    UserDict.__init__(self, data)

    # Making the TsGroup non mutable
    self._initialized = True

    # Trying to add argument as metainfo
    self.set_info(**kwargs)

__getattr__

__getattr__(name)

Allows dynamic access to metadata columns as properties.

Parameters:

Name Type Description Default
name str

The name of the metadata column to access.

required

Returns:

Type Description
Series

The series of values for the requested metadata column.

Raises:

Type Description
AttributeError

If the requested attribute is not a metadata column.

Source code in pynapple/core/ts_group.py
def __getattr__(self, name):
    """
    Allows dynamic access to metadata columns as properties.

    Parameters
    ----------
    name : str
        The name of the metadata column to access.

    Returns
    -------
    pandas.Series
        The series of values for the requested metadata column.

    Raises
    ------
    AttributeError
        If the requested attribute is not a metadata column.
    """
    # avoid infinite recursion when pickling due to
    # self._metadata.column having attributes '__reduce__', '__reduce_ex__'
    if name in ("__getstate__", "__setstate__", "__reduce__", "__reduce_ex__"):
        raise AttributeError(name)
    # Check if the requested attribute is part of the metadata
    if name in self._metadata.columns:
        return self._metadata[name]
    else:
        # If the attribute is not part of the metadata, raise AttributeError
        raise AttributeError(
            f"'{type(self).__name__}' object has no attribute '{name}'"
        )

keys

keys()

Return index/keys of TsGroup

Returns:

Type Description
list

List of keys

Source code in pynapple/core/ts_group.py
def keys(self):
    """
    Return index/keys of TsGroup

    Returns
    -------
    list
        List of keys
    """
    return list(self.data.keys())

items

items()

Return a list of key/object.

Returns:

Type Description
list

List of tuples

Source code in pynapple/core/ts_group.py
def items(self):
    """
    Return a list of key/object.

    Returns
    -------
    list
        List of tuples
    """
    return list(self.data.items())

values

values()

Return a list of all the Ts/Tsd objects in the TsGroup

Returns:

Type Description
list

List of Ts/Tsd objects

Source code in pynapple/core/ts_group.py
def values(self):
    """
    Return a list of all the Ts/Tsd objects in the TsGroup

    Returns
    -------
    list
        List of Ts/Tsd objects
    """
    return list(self.data.values())

set_info

set_info(*args, **kwargs)

Add metadata information about the TsGroup. Metadata are saved as a DataFrame.

Parameters:

Name Type Description Default
*args

pandas.Dataframe or list of pandas.DataFrame

()
**kwargs

Can be either pandas.Series, numpy.ndarray, list or tuple

{}

Raises:

Type Description
RuntimeError

Raise an error if no column labels are found when passing simple arguments, indexes are not equals for a pandas series,+ not the same length when passing numpy array.

TypeError

If some of the provided metadata could not be set.

Examples:

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)

To add metadata with a pandas.DataFrame:

>>> import pandas as pd
>>> structs = pd.DataFrame(index = [0,1,2], data=['pfc','pfc','ca1'], columns=['struct'])
>>> tsgroup.set_info(structs)
>>> tsgroup
  Index    Freq. (Hz)  struct
-------  ------------  --------
      0             1  pfc
      1             2  pfc
      2             4  ca1

To add metadata with a pd.Series, numpy.ndarray, list or tuple:

>>> hd = pd.Series(index = [0,1,2], data = [0,1,1])
>>> tsgroup.set_info(hd=hd)
>>> tsgroup
  Index    Freq. (Hz)  struct      hd
-------  ------------  --------  ----
      0             1  pfc          0
      1             2  pfc          1
      2             4  ca1          1
Source code in pynapple/core/ts_group.py
def set_info(self, *args, **kwargs):
    """
    Add metadata information about the TsGroup.
    Metadata are saved as a DataFrame.

    Parameters
    ----------
    *args
        pandas.Dataframe or list of pandas.DataFrame
    **kwargs
        Can be either pandas.Series, numpy.ndarray, list or tuple

    Raises
    ------
    RuntimeError
        Raise an error if
            no column labels are found when passing simple arguments,
            indexes are not equals for a pandas series,+
            not the same length when passing numpy array.
    TypeError
        If some of the provided metadata could not be set.

    Examples
    --------
    >>> import pynapple as nap
    >>> import numpy as np
    >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
    1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
    2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
    }
    >>> tsgroup = nap.TsGroup(tmp)

    To add metadata with a pandas.DataFrame:

    >>> import pandas as pd
    >>> structs = pd.DataFrame(index = [0,1,2], data=['pfc','pfc','ca1'], columns=['struct'])
    >>> tsgroup.set_info(structs)
    >>> tsgroup
      Index    Freq. (Hz)  struct
    -------  ------------  --------
          0             1  pfc
          1             2  pfc
          2             4  ca1

    To add metadata with a pd.Series, numpy.ndarray, list or tuple:

    >>> hd = pd.Series(index = [0,1,2], data = [0,1,1])
    >>> tsgroup.set_info(hd=hd)
    >>> tsgroup
      Index    Freq. (Hz)  struct      hd
    -------  ------------  --------  ----
          0             1  pfc          0
          1             2  pfc          1
          2             4  ca1          1

    """
    # check for duplicate names, otherwise "self.metadata_name"
    # syntax would behave unexpectedly.
    self._check_metadata_column_names(*args, **kwargs)
    not_set = []
    if len(args):
        for arg in args:
            if isinstance(arg, pd.DataFrame):
                if pd.Index.equals(self._metadata.index, arg.index):
                    self._metadata = self._metadata.join(arg)
                else:
                    raise RuntimeError("Index are not equals")
            elif isinstance(arg, (pd.Series, np.ndarray, list)):
                raise RuntimeError("Argument should be passed as keyword argument.")
            else:
                not_set.append(arg)
    if len(kwargs):
        for k, v in kwargs.items():
            if isinstance(v, pd.Series):
                if pd.Index.equals(self._metadata.index, v.index):
                    self._metadata[k] = v
                else:
                    raise RuntimeError(
                        "Index are not equals for argument {}".format(k)
                    )
            elif isinstance(v, (np.ndarray, list, tuple)):
                if len(self._metadata) == len(v):
                    self._metadata[k] = np.asarray(v)
                else:
                    raise RuntimeError("Array is not the same length.")
            else:
                not_set.append({k: v})
    if not_set:
        raise TypeError(
            f"Cannot set the following metadata:\n{not_set}.\nMetadata columns provided must be  "
            f"of type `panda.Series`, `tuple`, `list`, or `numpy.ndarray`."
        )

get_info

get_info(key)

Returns the metainfo located in one column. The key for the column frequency is "rate".

Parameters:

Name Type Description Default
key str

One of the metainfo columns name

required

Returns:

Type Description
Series

The metainfo

Source code in pynapple/core/ts_group.py
def get_info(self, key):
    """
    Returns the metainfo located in one column.
    The key for the column frequency is "rate".

    Parameters
    ----------
    key : str
        One of the metainfo columns name

    Returns
    -------
    pandas.Series
        The metainfo
    """
    if key in ["freq", "frequency"]:
        key = "rate"
    return self._metadata[key]

restrict

restrict(ep)

Restricts a TsGroup object to a set of time intervals delimited by an IntervalSet object

Parameters:

Name Type Description Default
ep IntervalSet

the IntervalSet object

required

Returns:

Type Description
TsGroup

TsGroup object restricted to ep

Examples:

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)
>>> ep = nap.IntervalSet(start=0, end=100, time_units='s')
>>> newtsgroup = tsgroup.restrict(ep)

All objects within the TsGroup automatically inherit the epochs defined by ep.

>>> newtsgroup.time_support
   start    end
0    0.0  100.0
>>> newtsgroup[0].time_support
   start    end
0    0.0  100.0
Source code in pynapple/core/ts_group.py
def restrict(self, ep):
    """
    Restricts a TsGroup object to a set of time intervals delimited by an IntervalSet object

    Parameters
    ----------
    ep : IntervalSet
        the IntervalSet object

    Returns
    -------
    TsGroup
        TsGroup object restricted to ep

    Examples
    --------
    >>> import pynapple as nap
    >>> import numpy as np
    >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
    1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
    2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
    }
    >>> tsgroup = nap.TsGroup(tmp)
    >>> ep = nap.IntervalSet(start=0, end=100, time_units='s')
    >>> newtsgroup = tsgroup.restrict(ep)

    All objects within the TsGroup automatically inherit the epochs defined by ep.

    >>> newtsgroup.time_support
       start    end
    0    0.0  100.0
    >>> newtsgroup[0].time_support
       start    end
    0    0.0  100.0
    """
    newgr = {}
    for k in self.index:
        newgr[k] = self.data[k].restrict(ep)
    cols = self._metadata.columns.drop("rate")

    return TsGroup(
        newgr, time_support=ep, bypass_check=True, **self._metadata[cols]
    )

value_from

value_from(tsd, ep=None)

Replace the value of each Ts/Tsd object within the Ts group with the closest value from tsd argument

Parameters:

Name Type Description Default
tsd Tsd

The Tsd object holding the values to replace

required
ep IntervalSet

The IntervalSet object to restrict the operation. If None, the time support of the tsd input object is used.

None

Returns:

Type Description
TsGroup

TsGroup object with the new values

Examples:

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)
>>> ep = nap.IntervalSet(start=0, end=100, time_units='s')

The variable tsd is a time series object containing the values to assign, for example the tracking data:

>>> tsd = nap.Tsd(t=np.arange(0,100), d=np.random.rand(100), time_units='s')
>>> ep = nap.IntervalSet(start = 0, end = 100, time_units = 's')
>>> newtsgroup = tsgroup.value_from(tsd, ep)
Source code in pynapple/core/ts_group.py
def value_from(self, tsd, ep=None):
    """
    Replace the value of each Ts/Tsd object within the Ts group with the closest value from tsd argument

    Parameters
    ----------
    tsd : Tsd
        The Tsd object holding the values to replace
    ep : IntervalSet
        The IntervalSet object to restrict the operation.
        If None, the time support of the tsd input object is used.

    Returns
    -------
    TsGroup
        TsGroup object with the new values

    Examples
    --------
    >>> import pynapple as nap
    >>> import numpy as np
    >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
    1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
    2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
    }
    >>> tsgroup = nap.TsGroup(tmp)
    >>> ep = nap.IntervalSet(start=0, end=100, time_units='s')

    The variable tsd is a time series object containing the values to assign, for example the tracking data:

    >>> tsd = nap.Tsd(t=np.arange(0,100), d=np.random.rand(100), time_units='s')
    >>> ep = nap.IntervalSet(start = 0, end = 100, time_units = 's')
    >>> newtsgroup = tsgroup.value_from(tsd, ep)

    """
    if ep is None:
        ep = tsd.time_support

    newgr = {}
    for k in self.data:
        newgr[k] = self.data[k].value_from(tsd, ep)

    cols = self._metadata.columns.drop("rate")
    return TsGroup(newgr, time_support=ep, **self._metadata[cols])

count

count(*args, dtype=None, **kwargs)

Count occurences of events within bin_size or within a set of bins defined as an IntervalSet. You can call this function in multiple ways :

  1. tsgroup.count(bin_size=1, time_units = 'ms') -> Count occurence of events within a 1 ms bin defined on the time support of the object.

  2. tsgroup.count(1, ep=my_epochs) -> Count occurent of events within a 1 second bin defined on the IntervalSet my_epochs.

  3. tsgroup.count(ep=my_bins) -> Count occurent of events within each epoch of the intervalSet object my_bins

  4. tsgroup.count() -> Count occurent of events within each epoch of the time support.

bin_size should be seconds unless specified. If bin_size is used and no epochs is passed, the data will be binned based on the time support of the object.

Parameters:

Name Type Description Default
bin_size None or float

The bin size (default is second)

required
ep None or IntervalSet

IntervalSet to restrict the operation

required
time_units str

Time units of bin size ('us', 'ms', 's' [default])

required
dtype

Data type for the count. Default is np.int64.

None

Returns:

Name Type Description
out TsdFrame

A TsdFrame with the columns being the index of each item in the TsGroup.

Examples:

This example shows how to count events within bins of 0.1 second for the first 100 seconds.

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)
>>> ep = nap.IntervalSet(start=0, end=100, time_units='s')
>>> bincount = tsgroup.count(0.1, ep)
>>> bincount
          0  1  2
Time (s)
0.05      0  0  0
0.15      0  0  0
0.25      0  0  1
0.35      0  0  0
0.45      0  0  0
...      .. .. ..
99.55     0  1  1
99.65     0  0  0
99.75     0  0  1
99.85     0  0  0
99.95     1  1  1
[1000 rows x 3 columns]
Source code in pynapple/core/ts_group.py
def count(self, *args, dtype=None, **kwargs):
    """
    Count occurences of events within bin_size or within a set of bins defined as an IntervalSet.
    You can call this function in multiple ways :

    1. *tsgroup.count(bin_size=1, time_units = 'ms')*
    -> Count occurence of events within a 1 ms bin defined on the time support of the object.

    2. *tsgroup.count(1, ep=my_epochs)*
    -> Count occurent of events within a 1 second bin defined on the IntervalSet my_epochs.

    3. *tsgroup.count(ep=my_bins)*
    -> Count occurent of events within each epoch of the intervalSet object my_bins

    4. *tsgroup.count()*
    -> Count occurent of events within each epoch of the time support.

    bin_size should be seconds unless specified.
    If bin_size is used and no epochs is passed, the data will be binned based on the time support of the object.

    Parameters
    ----------
    bin_size : None or float, optional
        The bin size (default is second)
    ep : None or IntervalSet, optional
        IntervalSet to restrict the operation
    time_units : str, optional
        Time units of bin size ('us', 'ms', 's' [default])
    dtype: type, optional
        Data type for the count. Default is np.int64.

    Returns
    -------
    out: TsdFrame
        A TsdFrame with the columns being the index of each item in the TsGroup.

    Examples
    --------
    This example shows how to count events within bins of 0.1 second for the first 100 seconds.

    >>> import pynapple as nap
    >>> import numpy as np
    >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
    1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
    2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
    }
    >>> tsgroup = nap.TsGroup(tmp)
    >>> ep = nap.IntervalSet(start=0, end=100, time_units='s')
    >>> bincount = tsgroup.count(0.1, ep)
    >>> bincount
              0  1  2
    Time (s)
    0.05      0  0  0
    0.15      0  0  0
    0.25      0  0  1
    0.35      0  0  0
    0.45      0  0  0
    ...      .. .. ..
    99.55     0  1  1
    99.65     0  0  0
    99.75     0  0  1
    99.85     0  0  0
    99.95     1  1  1
    [1000 rows x 3 columns]

    """
    bin_size = None
    if "bin_size" in kwargs:
        bin_size = kwargs["bin_size"]
        if isinstance(bin_size, int):
            bin_size = float(bin_size)
        if not isinstance(bin_size, float):
            raise ValueError("bin_size argument should be float.")
    else:
        for a in args:
            if isinstance(a, (float, int)):
                bin_size = float(a)

    time_units = "s"
    if "time_units" in kwargs:
        time_units = kwargs["time_units"]
        if not isinstance(time_units, str):
            raise ValueError("time_units argument should be 's', 'ms' or 'us'.")
    else:
        for a in args:
            if isinstance(a, str) and a in ["s", "ms", "us"]:
                time_units = a

    ep = self.time_support
    if "ep" in kwargs:
        ep = kwargs["ep"]
        if not isinstance(ep, IntervalSet):
            raise ValueError("ep argument should be IntervalSet")
    else:
        for a in args:
            if isinstance(a, IntervalSet):
                ep = a

    if dtype:
        try:
            dtype = np.dtype(dtype)
        except Exception:
            raise ValueError(f"{dtype} is not a valid numpy dtype.")

    starts = ep.start
    ends = ep.end

    if isinstance(bin_size, (float, int)):
        bin_size = float(bin_size)
        bin_size = TsIndex.format_timestamps(np.array([bin_size]), time_units)[0]

    # Call it on first element to pre-allocate the array
    if len(self) >= 1:
        time_index, d = _count(
            self.data[self.index[0]].index.values,
            starts,
            ends,
            bin_size,
            dtype=dtype,
        )

        count = np.zeros((len(time_index), len(self.index)), dtype=dtype)
        count[:, 0] = d

        for i in range(1, len(self.index)):
            count[:, i] = _count(
                self.data[self.index[i]].index.values,
                starts,
                ends,
                bin_size,
                dtype=dtype,
            )[1]

        return TsdFrame(t=time_index, d=count, time_support=ep, columns=self.index)
    else:
        time_index, _ = _count(np.array([]), starts, ends, bin_size, dtype=dtype)
        return TsdFrame(
            t=time_index, d=np.empty((len(time_index), 0)), time_support=ep
        )

to_tsd

to_tsd(*args)

Convert TsGroup to a Tsd. The timestamps of the TsGroup are merged together and sorted.

Parameters:

Name Type Description Default
*args

string, list, numpy.ndarray or pandas.Series

()

Examples:

>>> import pynapple as nap
>>> import numpy as np
>>> tsgroup = nap.TsGroup({0:nap.Ts(t=np.array([0, 1])), 5:nap.Ts(t=np.array([2, 3]))})
Index    rate
-------  ------
0       1
5       1

By default, the values of the Tsd is the index of the timestamp in the TsGroup:

>>> tsgroup.to_tsd()
Time (s)
0.0    0.0
1.0    0.0
2.0    5.0
3.0    5.0
dtype: float64

Values can be inherited from the metadata of the TsGroup by giving the key of the corresponding columns.

>>> tsgroup.set_info( phase=np.array([np.pi, 2*np.pi]) ) # assigning a phase to my 2 elements of the TsGroup
>>> tsgroup.to_tsd("phase")
Time (s)
0.0    3.141593
1.0    3.141593
2.0    6.283185
3.0    6.283185
dtype: float64

Values can also be passed directly to the function from a list, numpy.ndarray or pandas.Series of values as long as the length matches :

>>> tsgroup.to_tsd([-1, 1])
Time (s)
0.0   -1.0
1.0   -1.0
2.0    1.0
3.0    1.0
dtype: float64

The reverse operation can be done with the Tsd.to_tsgroup function :

>>> my_tsd
Time (s)
0.0    0.0
1.0    0.0
2.0    5.0
3.0    5.0
dtype: float64
>>> my_tsd.to_tsgroup()
  Index    rate
-------  ------
      0       1
      5       1

Returns:

Type Description
Tsd

Raises:

Type Description
RuntimeError

"Index are not equals" : if pandas.Series indexes don't match the TsGroup indexes "Values is not the same length" : if numpy.ndarray/list object is not the same size as the TsGroup object "Key not in metadata of TsGroup" : if string argument does not match any column names of the metadata, "Unknown argument format" ; if argument is not a string, list, numpy.ndarray or pandas.Series

Source code in pynapple/core/ts_group.py
def to_tsd(self, *args):
    """
    Convert TsGroup to a Tsd. The timestamps of the TsGroup are merged together and sorted.

    Parameters
    ----------
    *args
        string, list, numpy.ndarray or pandas.Series

    Examples
    --------
    >>> import pynapple as nap
    >>> import numpy as np
    >>> tsgroup = nap.TsGroup({0:nap.Ts(t=np.array([0, 1])), 5:nap.Ts(t=np.array([2, 3]))})
    Index    rate
    -------  ------
    0       1
    5       1

    By default, the values of the Tsd is the index of the timestamp in the TsGroup:

    >>> tsgroup.to_tsd()
    Time (s)
    0.0    0.0
    1.0    0.0
    2.0    5.0
    3.0    5.0
    dtype: float64

    Values can be inherited from the metadata of the TsGroup by giving the key of the corresponding columns.

    >>> tsgroup.set_info( phase=np.array([np.pi, 2*np.pi]) ) # assigning a phase to my 2 elements of the TsGroup
    >>> tsgroup.to_tsd("phase")
    Time (s)
    0.0    3.141593
    1.0    3.141593
    2.0    6.283185
    3.0    6.283185
    dtype: float64

    Values can also be passed directly to the function from a list, numpy.ndarray or pandas.Series of values as long as the length matches :

    >>> tsgroup.to_tsd([-1, 1])
    Time (s)
    0.0   -1.0
    1.0   -1.0
    2.0    1.0
    3.0    1.0
    dtype: float64

    The reverse operation can be done with the Tsd.to_tsgroup function :

    >>> my_tsd
    Time (s)
    0.0    0.0
    1.0    0.0
    2.0    5.0
    3.0    5.0
    dtype: float64
    >>> my_tsd.to_tsgroup()
      Index    rate
    -------  ------
          0       1
          5       1

    Returns
    -------
    Tsd

    Raises
    ------
    RuntimeError
        "Index are not equals" : if pandas.Series indexes don't match the TsGroup indexes
        "Values is not the same length" : if numpy.ndarray/list object is not the same size as the TsGroup object
        "Key not in metadata of TsGroup" : if string argument does not match any column names of the metadata,
        "Unknown argument format" ; if argument is not a string, list, numpy.ndarray or pandas.Series

    """
    if len(args):
        if isinstance(args[0], pd.Series):
            if pd.Index.equals(self._metadata.index, args[0].index):
                _values = args[0].values.flatten()
            else:
                raise RuntimeError("Index are not equals")
        elif isinstance(args[0], (np.ndarray, list)):
            if len(self._metadata) == len(args[0]):
                _values = np.array(args[0])
            else:
                raise RuntimeError("Values is not the same length.")
        elif isinstance(args[0], str):
            if args[0] in self._metadata.columns:
                _values = self._metadata[args[0]].values
            else:
                raise RuntimeError(
                    "Key {} not in metadata of TsGroup".format(args[0])
                )
        else:
            possible_keys = []
            for k, d in self._metadata.dtypes.items():
                if "int" in str(d) or "float" in str(d):
                    possible_keys.append(k)
            raise RuntimeError(
                "Unknown argument format. Must be pandas.Series, numpy.ndarray or a string from one of the following values : [{}]".format(
                    ", ".join(possible_keys)
                )
            )
    else:
        _values = self.index

    nt = 0
    for n in self.index:
        nt += len(self[n])

    times = np.zeros(nt)
    data = np.zeros(nt)
    k = 0
    for n, v in zip(self.index, _values):
        kl = len(self[n])
        times[k : k + kl] = self[n].index
        data[k : k + kl] = v
        k += kl

    idx = np.argsort(times)
    toreturn = Tsd(t=times[idx], d=data[idx], time_support=self.time_support)

    return toreturn

get

get(start, end=None, time_units='s')

Slice the TsGroup object from start to end such that all the timestamps within the group satisfy start<=t<=end. If end is None, only the timepoint closest to start is returned.

By default, the time support doesn't change. If you want to change the time support, use the restrict function.

Parameters:

Name Type Description Default
start float or int

The start (or closest time point if end is None)

required
end float or int or None

The end

None
Source code in pynapple/core/ts_group.py
def get(self, start, end=None, time_units="s"):
    """Slice the `TsGroup` object from `start` to `end` such that all the timestamps within the group satisfy `start<=t<=end`.
    If `end` is None, only the timepoint closest to `start` is returned.

    By default, the time support doesn't change. If you want to change the time support, use the `restrict` function.

    Parameters
    ----------
    start : float or int
        The start (or closest time point if `end` is None)
    end : float or int or None
        The end
    """
    newgr = {}
    for k in self.index:
        newgr[k] = self.data[k].get(start, end, time_units)
    cols = self._metadata.columns.drop("rate")

    return TsGroup(
        newgr,
        time_support=self.time_support,
        bypass_check=True,
        **self._metadata[cols],
    )

getby_threshold

getby_threshold(key, thr, op='>')

Return a TsGroup with all Ts/Tsd objects with values above threshold for metainfo under key.

Parameters:

Name Type Description Default
key str

One of the metainfo columns name

required
thr float

THe value for thresholding

required
op str

The type of operation. Possibilities are '>', '<', '>=' or '<='.

'>'

Returns:

Type Description
TsGroup

The new TsGroup

Raises:

Type Description
RuntimeError

Raise eror is operation is not recognized.

Examples:

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)
  Index    Freq. (Hz)
-------  ------------
      0             1
      1             2
      2             4

This exemple shows how to get a new TsGroup with all elements for which the metainfo frequency is above 1.

>>> newtsgroup = tsgroup.getby_threshold('freq', 1, op = '>')
  Index    Freq. (Hz)
-------  ------------
      1             2
      2             4
Source code in pynapple/core/ts_group.py
def getby_threshold(self, key, thr, op=">"):
    """
    Return a TsGroup with all Ts/Tsd objects with values above threshold for metainfo under key.

    Parameters
    ----------
    key : str
        One of the metainfo columns name
    thr : float
        THe value for thresholding
    op : str, optional
        The type of operation. Possibilities are '>', '<', '>=' or '<='.

    Returns
    -------
    TsGroup
        The new TsGroup

    Raises
    ------
    RuntimeError
        Raise eror is operation is not recognized.

    Examples
    --------
    >>> import pynapple as nap
    >>> import numpy as np
    >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
    1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
    2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
    }
    >>> tsgroup = nap.TsGroup(tmp)
      Index    Freq. (Hz)
    -------  ------------
          0             1
          1             2
          2             4

    This exemple shows how to get a new TsGroup with all elements for which the metainfo frequency is above 1.
    >>> newtsgroup = tsgroup.getby_threshold('freq', 1, op = '>')
      Index    Freq. (Hz)
    -------  ------------
          1             2
          2             4

    """
    if op == ">":
        ix = list(self._metadata.index[self._metadata[key] > thr])
        return self[ix]
    elif op == "<":
        ix = list(self._metadata.index[self._metadata[key] < thr])
        return self[ix]
    elif op == ">=":
        ix = list(self._metadata.index[self._metadata[key] >= thr])
        return self[ix]
    elif op == "<=":
        ix = list(self._metadata.index[self._metadata[key] <= thr])
        return self[ix]
    else:
        raise RuntimeError("Operation {} not recognized.".format(op))

getby_intervals

getby_intervals(key, bins)

Return a list of TsGroup binned.

Parameters:

Name Type Description Default
key str

One of the metainfo columns name

required
bins ndarray or list

The bin intervals

required

Returns:

Type Description
list

A list of TsGroup

Examples:

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp, alpha = np.arange(3))
  Index    Freq. (Hz)    alpha
-------  ------------  -------
      0             1        0
      1             2        1
      2             4        2

This exemple shows how to bin the TsGroup according to one metainfo key.

>>> newtsgroup, bincenter = tsgroup.getby_intervals('alpha', [0, 1, 2])
>>> newtsgroup
[  Index    Freq. (Hz)    alpha
 -------  ------------  -------
       0             1        0,
   Index    Freq. (Hz)    alpha
 -------  ------------  -------
       1             2        1]

By default, the function returns the center of the bins.

>>> bincenter
array([0.5, 1.5])
Source code in pynapple/core/ts_group.py
def getby_intervals(self, key, bins):
    """
    Return a list of TsGroup binned.

    Parameters
    ----------
    key : str
        One of the metainfo columns name
    bins : numpy.ndarray or list
        The bin intervals

    Returns
    -------
    list
        A list of TsGroup

    Examples
    --------
    >>> import pynapple as nap
    >>> import numpy as np
    >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
    1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
    2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
    }
    >>> tsgroup = nap.TsGroup(tmp, alpha = np.arange(3))
      Index    Freq. (Hz)    alpha
    -------  ------------  -------
          0             1        0
          1             2        1
          2             4        2

    This exemple shows how to bin the TsGroup according to one metainfo key.
    >>> newtsgroup, bincenter = tsgroup.getby_intervals('alpha', [0, 1, 2])
    >>> newtsgroup
    [  Index    Freq. (Hz)    alpha
     -------  ------------  -------
           0             1        0,
       Index    Freq. (Hz)    alpha
     -------  ------------  -------
           1             2        1]

    By default, the function returns the center of the bins.
    >>> bincenter
    array([0.5, 1.5])
    """
    idx = np.digitize(self._metadata[key], bins) - 1
    groups = self._metadata.index.groupby(idx)
    ix = np.unique(list(groups.keys()))
    ix = ix[ix >= 0]
    ix = ix[ix < len(bins) - 1]
    xb = bins[0:-1] + np.diff(bins) / 2
    sliced = [self[list(groups[i])] for i in ix]
    return sliced, xb[ix]

getby_category

getby_category(key)

Return a list of TsGroup grouped by category.

Parameters:

Name Type Description Default
key str

One of the metainfo columns name

required

Returns:

Type Description
dict

A dictionary of TsGroup

Examples:

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp, group = [0,1,1])
  Index    Freq. (Hz)    group
-------  ------------  -------
      0             1        0
      1             2        1
      2             4        1

This exemple shows how to group the TsGroup according to one metainfo key.

>>> newtsgroup = tsgroup.getby_category('group')
>>> newtsgroup
{0:   Index    Freq. (Hz)    group
 -------  ------------  -------
       0             1        0,
 1:   Index    Freq. (Hz)    group
 -------  ------------  -------
       1             2        1
       2             4        1}
Source code in pynapple/core/ts_group.py
def getby_category(self, key):
    """
    Return a list of TsGroup grouped by category.

    Parameters
    ----------
    key : str
        One of the metainfo columns name

    Returns
    -------
    dict
        A dictionary of TsGroup

    Examples
    --------
    >>> import pynapple as nap
    >>> import numpy as np
    >>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
    1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
    2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
    }
    >>> tsgroup = nap.TsGroup(tmp, group = [0,1,1])
      Index    Freq. (Hz)    group
    -------  ------------  -------
          0             1        0
          1             2        1
          2             4        1

    This exemple shows how to group the TsGroup according to one metainfo key.
    >>> newtsgroup = tsgroup.getby_category('group')
    >>> newtsgroup
    {0:   Index    Freq. (Hz)    group
     -------  ------------  -------
           0             1        0,
     1:   Index    Freq. (Hz)    group
     -------  ------------  -------
           1             2        1
           2             4        1}
    """
    groups = self._metadata.groupby(key).groups
    sliced = {k: self[list(groups[k])] for k in groups.keys()}
    return sliced

merge_group staticmethod

merge_group(
    *tsgroups,
    reset_index=False,
    reset_time_support=False,
    ignore_metadata=False
)

Merge multiple TsGroup objects into a single TsGroup object.

Parameters:

Name Type Description Default
*tsgroups TsGroup

The TsGroup objects to merge

()
reset_index bool

If True, the keys will be reset to range(len(data)) If False, the keys of the TsGroup objects should be non-overlapping and will be preserved

False
reset_time_support bool

If True, the merged TsGroup will merge time supports from all the Ts/Tsd objects in data If False, the time support of the TsGroup objects should be the same and will be preserved

False
ignore_metadata bool

If True, the merged TsGroup will not have any metadata columns other than 'rate' If False, all metadata columns should be the same and all metadata will be concatenated

False

Returns:

Type Description
TsGroup

A TsGroup of merged objects

Raises:

Type Description
TypeError

If the input objects are not TsGroup objects

ValueError

If ignore_metadata=False but metadata columns are not the same If reset_index=False but keys overlap If reset_time_support=False but time supports are not the same

Source code in pynapple/core/ts_group.py
@staticmethod
def merge_group(
    *tsgroups, reset_index=False, reset_time_support=False, ignore_metadata=False
):
    """
    Merge multiple TsGroup objects into a single TsGroup object.

    Parameters
    ----------
    *tsgroups : TsGroup
        The TsGroup objects to merge
    reset_index : bool, optional
        If True, the keys will be reset to range(len(data))
        If False, the keys of the TsGroup objects should be non-overlapping and will be preserved
    reset_time_support : bool, optional
        If True, the merged TsGroup will merge time supports from all the Ts/Tsd objects in data
        If False, the time support of the TsGroup objects should be the same and will be preserved
    ignore_metadata : bool, optional
        If True, the merged TsGroup will not have any metadata columns other than 'rate'
        If False, all metadata columns should be the same and all metadata will be concatenated

    Returns
    -------
    TsGroup
        A TsGroup of merged objects

    Raises
    ------
    TypeError
        If the input objects are not TsGroup objects
    ValueError
        If `ignore_metadata=False` but metadata columns are not the same
        If `reset_index=False` but keys overlap
        If `reset_time_support=False` but time supports are not the same

    """
    is_tsgroup = [isinstance(tsg, TsGroup) for tsg in tsgroups]
    if not all(is_tsgroup):
        not_tsgroup_index = [i + 1 for i, boo in enumerate(is_tsgroup) if not boo]
        raise TypeError(f"Input at positions {not_tsgroup_index} are not TsGroup!")

    if len(tsgroups) == 1:
        print("Only one TsGroup object provided, no merge needed.")
        return tsgroups[0]

    tsg1 = tsgroups[0]
    items = tsg1.items()
    keys = set(tsg1.keys())
    metadata = tsg1._metadata

    for i, tsg in enumerate(tsgroups[1:]):
        if not ignore_metadata:
            if tsg1.metadata_columns != tsg.metadata_columns:
                raise ValueError(
                    f"TsGroup at position {i+2} has different metadata columns from previous TsGroup objects. "
                    "Set `ignore_metadata=True` to bypass the check."
                )
            metadata = pd.concat([metadata, tsg._metadata], axis=0)

        if not reset_index:
            key_overlap = keys.intersection(tsg.keys())
            if key_overlap:
                raise ValueError(
                    f"TsGroup at position {i+2} has overlapping keys {key_overlap} with previous TsGroup objects. "
                    "Set `reset_index=True` to bypass the check."
                )
            keys.update(tsg.keys())

        if reset_time_support:
            time_support = None
        else:
            if not np.allclose(
                tsg1.time_support.as_units("s").to_numpy(),
                tsg.time_support.as_units("s").to_numpy(),
                atol=10 ** (-nap_config.time_index_precision),
                rtol=0,
            ):
                raise ValueError(
                    f"TsGroup at position {i+2} has different time support from previous TsGroup objects. "
                    "Set `reset_time_support=True` to bypass the check."
                )
            time_support = tsg1.time_support

        items.extend(tsg.items())

    if reset_index:
        metadata.index = range(len(metadata))
        data = {i: ts[1] for i, ts in enumerate(items)}
    else:
        data = dict(items)

    if ignore_metadata:
        return TsGroup(data, time_support=time_support, bypass_check=False)
    else:
        cols = metadata.columns.drop("rate")
        return TsGroup(
            data, time_support=time_support, bypass_check=False, **metadata[cols]
        )

merge

merge(
    *tsgroups,
    reset_index=False,
    reset_time_support=False,
    ignore_metadata=False
)

Merge the TsGroup object with other TsGroup objects. Common uses include adding more neurons/channels (supposing each Ts/Tsd corresponds to data from a neuron/channel) or adding more trials (supposing each Ts/Tsd corresponds to data from a trial).

Parameters:

Name Type Description Default
*tsgroups TsGroup

The TsGroup objects to merge with

()
reset_index bool

If True, the keys will be reset to range(len(data)) If False, the keys of the TsGroup objects should be non-overlapping and will be preserved

False
reset_time_support bool

If True, the merged TsGroup will merge time supports from all the Ts/Tsd objects in data If False, the time support of the TsGroup objects should be the same and will be preserved

False
ignore_metadata bool

If True, the merged TsGroup will not have any metadata columns other than 'rate' If False, all metadata columns should be the same and all metadata will be concatenated

False

Returns:

Type Description
TsGroup

A TsGroup of merged objects

Raises:

Type Description
TypeError

If the input objects are not TsGroup objects

ValueError

If ignore_metadata=False but metadata columns are not the same If reset_index=False but keys overlap If reset_time_support=False but time supports are not the same

Examples:

>>> import pynapple as nap
>>> time_support_a = nap.IntervalSet(start=-1, end=1, time_units='s')
>>> time_support_b = nap.IntervalSet(start=-5, end=5, time_units='s')
>>> dict1 = {0: nap.Ts(t=[-1, 0, 1], time_units='s')}
>>> tsgroup1 = nap.TsGroup(dict1, time_support=time_support_a)
>>> dict2 = {10: nap.Ts(t=[-1, 0, 1], time_units='s')}
>>> tsgroup2 = nap.TsGroup(dict2, time_support=time_support_a)
>>> dict3 = {0: nap.Ts(t=[-.1, 0, .1], time_units='s')}
>>> tsgroup3 = nap.TsGroup(dict3, time_support=time_support_a)
>>> dict4 = {10: nap.Ts(t=[-1, 0, 1], time_units='s')}
>>> tsgroup4 = nap.TsGroup(dict2, time_support=time_support_b)

Merge with default options if have the same time support and non-overlapping indexes:

>>> tsgroup_12 = tsgroup1.merge(tsgroup2)
>>> tsgroup_12
Index    rate
-------  ------
     0     1.5
    10     1.5

Set reset_index=True if indexes are overlapping:

>>> tsgroup_13 = tsgroup1.merge(tsgroup3, reset_index=True)
>>> tsgroup_13
Index    rate
-------  ------
      0     1.5
      1     1.5

Set reset_time_support=True if time supports are different:

>>> tsgroup_14 = tsgroup1.merge(tsgroup4, reset_time_support=True)
>>> tsgroup_14
>>> tsgroup_14.time_support
Index    rate
-------  ------
      0     0.3
     10     0.3
        start    end
0       -5      5
shape: (1, 2), time unit: sec.
See Also

TsGroup.merge_group

Source code in pynapple/core/ts_group.py
def merge(
    self,
    *tsgroups,
    reset_index=False,
    reset_time_support=False,
    ignore_metadata=False,
):
    """
    Merge the TsGroup object with other TsGroup objects.
    Common uses include adding more neurons/channels (supposing each Ts/Tsd corresponds to data from a neuron/channel) or adding more trials (supposing each Ts/Tsd corresponds to data from a trial).

    Parameters
    ----------
    *tsgroups : TsGroup
        The TsGroup objects to merge with
    reset_index : bool, optional
        If True, the keys will be reset to range(len(data))
        If False, the keys of the TsGroup objects should be non-overlapping and will be preserved
    reset_time_support : bool, optional
        If True, the merged TsGroup will merge time supports from all the Ts/Tsd objects in data
        If False, the time support of the TsGroup objects should be the same and will be preserved
    ignore_metadata : bool, optional
        If True, the merged TsGroup will not have any metadata columns other than 'rate'
        If False, all metadata columns should be the same and all metadata will be concatenated

    Returns
    -------
    TsGroup
        A TsGroup of merged objects

    Raises
    ------
    TypeError
        If the input objects are not TsGroup objects
    ValueError
        If `ignore_metadata=False` but metadata columns are not the same
        If `reset_index=False` but keys overlap
        If `reset_time_support=False` but time supports are not the same

    Examples
    --------

    >>> import pynapple as nap
    >>> time_support_a = nap.IntervalSet(start=-1, end=1, time_units='s')
    >>> time_support_b = nap.IntervalSet(start=-5, end=5, time_units='s')

    >>> dict1 = {0: nap.Ts(t=[-1, 0, 1], time_units='s')}
    >>> tsgroup1 = nap.TsGroup(dict1, time_support=time_support_a)

    >>> dict2 = {10: nap.Ts(t=[-1, 0, 1], time_units='s')}
    >>> tsgroup2 = nap.TsGroup(dict2, time_support=time_support_a)

    >>> dict3 = {0: nap.Ts(t=[-.1, 0, .1], time_units='s')}
    >>> tsgroup3 = nap.TsGroup(dict3, time_support=time_support_a)

    >>> dict4 = {10: nap.Ts(t=[-1, 0, 1], time_units='s')}
    >>> tsgroup4 = nap.TsGroup(dict2, time_support=time_support_b)

    Merge with default options if have the same time support and non-overlapping indexes:

    >>> tsgroup_12 = tsgroup1.merge(tsgroup2)
    >>> tsgroup_12
    Index    rate
    -------  ------
         0     1.5
        10     1.5

    Set `reset_index=True` if indexes are overlapping:

    >>> tsgroup_13 = tsgroup1.merge(tsgroup3, reset_index=True)
    >>> tsgroup_13
    Index    rate
    -------  ------
          0     1.5
          1     1.5

    Set `reset_time_support=True` if time supports are different:

    >>> tsgroup_14 = tsgroup1.merge(tsgroup4, reset_time_support=True)
    >>> tsgroup_14
    >>> tsgroup_14.time_support
    Index    rate
    -------  ------
          0     0.3
         10     0.3

                start    end
        0       -5      5
        shape: (1, 2), time unit: sec.

    See Also
    --------
    [`TsGroup.merge_group`](./#pynapple.core.ts_group.TsGroup.merge_group)
    """
    return TsGroup.merge_group(
        self,
        *tsgroups,
        reset_index=reset_index,
        reset_time_support=reset_time_support,
        ignore_metadata=ignore_metadata,
    )

save

save(filename)

Save TsGroup object in npz format. The file will contain the timestamps, the data (if group of Tsd), group index, the time support and the metadata

The main purpose of this function is to save small/medium sized TsGroup objects.

The function will "flatten" the TsGroup by sorting all the timestamps and assigning to each the corresponding index. Typically, a TsGroup like this :

TsGroup({
    0 : Tsd(t=[0, 2, 4], d=[1, 2, 3])
    1 : Tsd(t=[1, 5], d=[5, 6])
})

will be saved as npz with the following keys:

{
    't' : [0, 1, 2, 4, 5],
    'd' : [1, 5, 2, 3, 5],
    'index' : [0, 1, 0, 0, 1],
    'start' : [0],
    'end' : [5],
    'keys' : [0, 1],
    'type' : 'TsGroup'
}

Metadata are saved by columns with the column name as the npz key. To avoid potential conflicts, make sure the columns name of the metadata are different from ['t', 'd', 'start', 'end', 'index', 'keys']

You can load the object with nap.load_file. Default keys are 't', 'd'(optional), 'start', 'end', 'index', 'keys' and 'type'. See the example below.

Parameters:

Name Type Description Default
filename str

The filename

required

Examples:

>>> import pynapple as nap
>>> import numpy as np
>>> tsgroup = nap.TsGroup({
    0 : nap.Ts(t=np.array([0.0, 2.0, 4.0])),
    6 : nap.Ts(t=np.array([1.0, 5.0]))
    },
    group = np.array([0, 1]),
    location = np.array(['right foot', 'left foot'])
    )
>>> tsgroup
  Index    rate    group  location
-------  ------  -------  ----------
      0     0.6        0  right foot
      6     0.4        1  left foot
>>> tsgroup.save("my_tsgroup.npz")

To get back to pynapple, you can use the nap.load_file function :

>>> tsgroup = nap.load_file("my_tsgroup.npz")
>>> tsgroup
  Index    rate    group  location
-------  ------  -------  ----------
      0     0.6        0  right foot
      6     0.4        1  left foot

Raises:

Type Description
RuntimeError

If filename is not str, path does not exist or filename is a directory.

Source code in pynapple/core/ts_group.py
def save(self, filename):
    """
    Save TsGroup object in npz format. The file will contain the timestamps,
    the data (if group of Tsd), group index, the time support and the metadata

    The main purpose of this function is to save small/medium sized TsGroup
    objects.

    The function will "flatten" the TsGroup by sorting all the timestamps
    and assigning to each the corresponding index. Typically, a TsGroup like
    this :

    ``` py
    TsGroup({
        0 : Tsd(t=[0, 2, 4], d=[1, 2, 3])
        1 : Tsd(t=[1, 5], d=[5, 6])
    })
    ```

    will be saved as npz with the following keys:

    ``` py
    {
        't' : [0, 1, 2, 4, 5],
        'd' : [1, 5, 2, 3, 5],
        'index' : [0, 1, 0, 0, 1],
        'start' : [0],
        'end' : [5],
        'keys' : [0, 1],
        'type' : 'TsGroup'
    }
    ```

    Metadata are saved by columns with the column name as the npz key. To avoid
    potential conflicts, make sure the columns name of the metadata are different
    from ['t', 'd', 'start', 'end', 'index', 'keys']

    You can load the object with `nap.load_file`. Default keys are 't', 'd'(optional),
    'start', 'end', 'index', 'keys' and 'type'.
    See the example below.

    Parameters
    ----------
    filename : str
        The filename

    Examples
    --------
    >>> import pynapple as nap
    >>> import numpy as np
    >>> tsgroup = nap.TsGroup({
        0 : nap.Ts(t=np.array([0.0, 2.0, 4.0])),
        6 : nap.Ts(t=np.array([1.0, 5.0]))
        },
        group = np.array([0, 1]),
        location = np.array(['right foot', 'left foot'])
        )
    >>> tsgroup
      Index    rate    group  location
    -------  ------  -------  ----------
          0     0.6        0  right foot
          6     0.4        1  left foot
    >>> tsgroup.save("my_tsgroup.npz")

    To get back to pynapple, you can use the `nap.load_file` function :

    >>> tsgroup = nap.load_file("my_tsgroup.npz")
    >>> tsgroup
      Index    rate    group  location
    -------  ------  -------  ----------
          0     0.6        0  right foot
          6     0.4        1  left foot

    Raises
    ------
    RuntimeError
        If filename is not str, path does not exist or filename is a directory.
    """
    filename = check_filename(filename)

    dicttosave = {"type": np.array(["TsGroup"], dtype=np.str_)}
    for k in self._metadata.columns:
        if k not in ["t", "d", "start", "end", "index", "keys"]:
            tmp = self._metadata[k].values
            if tmp.dtype == np.dtype("O"):
                tmp = tmp.astype(np.str_)
            dicttosave[k] = tmp

    # We can't use to_tsd here in case tsgroup contains Tsd and not only Ts.
    nt = 0
    for n in self.index:
        nt += len(self[n])

    times = np.zeros(nt)
    data = np.full(nt, np.nan)
    index = np.zeros(nt, dtype=np.int64)
    k = 0
    for n in self.index:
        kl = len(self[n])
        times[k : k + kl] = self[n].index
        if isinstance(self[n], BaseTsd):
            data[k : k + kl] = self[n].values
        index[k : k + kl] = int(n)
        k += kl

    idx = np.argsort(times)
    times = times[idx]
    index = index[idx]

    dicttosave["t"] = times
    dicttosave["index"] = index
    if not np.all(np.isnan(data)):
        dicttosave["d"] = data[idx]
    dicttosave["keys"] = np.array(self.keys())
    dicttosave["start"] = self.time_support.start
    dicttosave["end"] = self.time_support.end

    np.savez(filename, **dicttosave)

    return