Skip to content

Perievent

pynapple.process.perievent

Perievent functions

compute_perievent

compute_perievent(data, tref, minmax, time_unit='s')

Center the timestamps of a time series object or a time series group around the timestamps given by the tref argument. minmax indicates the start and end of the window. If minmax=(-5, 10), the window will be from -5 second to 10 second. If minmax=10, the window will be from -10 second to 10 second.

To center continuous time series around a set of timestamps, you can use compute_perievent_continuous.

Parameters:

Name Type Description Default
data (Ts, Tsd or TsGroup)

The data to align to tref. If Ts/Tsd, returns a TsGroup. If TsGroup, returns a dictionary of TsGroup

required
tref Ts or Tsd

The timestamps of the event to align to

required
minmax (tuple, int or float)

The window size. Can be unequal on each side i.e. (-500, 1000).

required
time_unit str

Time units of the minmax ('s' [default], 'ms', 'us').

's'

Returns:

Type Description
dict

A TsGroup if data is a Ts/Tsd or a dictionary of TsGroup if data is a TsGroup.

Raises:

Type Description
RuntimeError

if tref is not a Ts/Tsd object or if data is not a Ts/Tsd or TsGroup

Source code in pynapple/process/perievent.py
def compute_perievent(data, tref, minmax, time_unit="s"):
    """
    Center the timestamps of a time series object or a time series group around the timestamps given by the `tref` argument.
    `minmax` indicates the start and end of the window. If `minmax=(-5, 10)`, the window will be from -5 second to 10 second.
    If `minmax=10`, the window will be from -10 second to 10 second.

    To center continuous time series around a set of timestamps, you can use `compute_perievent_continuous`.

    Parameters
    ----------
    data : Ts, Tsd or TsGroup
        The data to align to tref.
        If Ts/Tsd, returns a TsGroup.
        If TsGroup, returns a dictionary of TsGroup
    tref : Ts or Tsd
        The timestamps of the event to align to
    minmax : tuple, int or float
        The window size. Can be unequal on each side i.e. (-500, 1000).
    time_unit : str, optional
        Time units of the minmax ('s' [default], 'ms', 'us').

    Returns
    -------
    dict
        A TsGroup if data is a Ts/Tsd or
        a dictionary of TsGroup if data is a TsGroup.

    Raises
    ------
    RuntimeError
        if tref is not a Ts/Tsd object or if data is not a Ts/Tsd or TsGroup
    """
    assert isinstance(tref, (nap.Ts, nap.Tsd)), "tref should be a Ts or Tsd object."
    assert isinstance(
        data, (nap.Ts, nap.Tsd, nap.TsGroup)
    ), "data should be a Ts, Tsd or TsGroup."
    assert isinstance(
        minmax, (float, int, tuple)
    ), "minmax should be a tuple or int or float."
    assert isinstance(time_unit, str), "time_unit should be a str."
    assert time_unit in ["s", "ms", "us"], "time_unit should be 's', 'ms' or 'us'"

    if isinstance(minmax, float) or isinstance(minmax, int):
        minmax = np.array([minmax, minmax], dtype=np.float64)

    window = np.abs(nap.TsIndex.format_timestamps(np.array(minmax), time_unit))

    time_support = nap.IntervalSet(start=-window[0], end=window[1])

    if isinstance(data, nap.TsGroup):
        toreturn = {}

        for n in data.index:
            toreturn[n] = _align_tsd(data[n], tref, window, time_support)

        return toreturn

    else:
        return _align_tsd(data, tref, window, time_support)

compute_perievent_continuous

compute_perievent_continuous(
    data, tref, minmax, ep=None, time_unit="s"
)

Center continuous time series around the timestamps given by the 'tref' argument. minmax indicates the start and end of the window. If minmax=(-5, 10), the window will be from -5 second to 10 second. If minmax=10, the window will be from -10 second to 10 second.

To realign timestamps around a set of timestamps, you can use compute_perievent_continuous.

This function assumes a constant sampling rate of the time series.

Parameters:

Name Type Description Default
data (Tsd, TsdFrame or TsdTensor)

The data to align to tref.

required
tref Ts or Tsd

The timestamps of the event to align to

required
minmax tuple or int or float

The window size. Can be unequal on each side i.e. (-500, 1000).

required
ep IntervalSet

The epochs to perform the operation. If None, the default is the time support of the data.

None
time_unit str

Time units of the minmax ('s' [default], 'ms', 'us').

's'

Returns:

Type Description
(TsdFrame, TsdTensor)

If data is a one-dimensional Tsd, the output is a TsdFrame. Each column is one timestamps from tref. If data is a TsdFrame or TsdTensor, the output is a TsdTensor with one more dimension. The first dimension is always time and the second dimension is the 'tref' timestamps.

Raises:

Type Description
RuntimeError

if tref is not a Ts/Tsd object or if data is not a Tsd/TsdFrame/TsdTensor object.

Source code in pynapple/process/perievent.py
def compute_perievent_continuous(data, tref, minmax, ep=None, time_unit="s"):
    """
    Center continuous time series around the timestamps given by the 'tref' argument.
    `minmax` indicates the start and end of the window. If `minmax=(-5, 10)`, the window will be from -5 second to 10 second.
    If `minmax=10`, the window will be from -10 second to 10 second.

    To realign timestamps around a set of timestamps, you can use `compute_perievent_continuous`.

    This function assumes a constant sampling rate of the time series.

    Parameters
    ----------
    data : Tsd, TsdFrame or TsdTensor
        The data to align to tref.
    tref : Ts or Tsd
        The timestamps of the event to align to
    minmax : tuple or int or float
        The window size. Can be unequal on each side i.e. (-500, 1000).
    ep : IntervalSet, optional
        The epochs to perform the operation. If None, the default is the time support of the data.
    time_unit : str, optional
        Time units of the minmax ('s' [default], 'ms', 'us').

    Returns
    -------
    TsdFrame, TsdTensor
        If `data` is a one-dimensional Tsd, the output is a TsdFrame. Each column is one timestamps from `tref`.
        If `data` is a TsdFrame or TsdTensor, the output is a TsdTensor with one more dimension. The first dimension is always time and the second dimension is the 'tref' timestamps.

    Raises
    ------
    RuntimeError
        if tref is not a Ts/Tsd object or if data is not a Tsd/TsdFrame/TsdTensor object.
    """

    assert isinstance(tref, (nap.Ts, nap.Tsd)), "tref should be a Ts or Tsd object."
    assert isinstance(
        data, (nap.Tsd, nap.TsdFrame, nap.TsdTensor)
    ), "data should be a Tsd, TsdFrame or TsdTensor."
    assert isinstance(
        minmax, (float, int, tuple)
    ), "minmax should be a tuple or int or float."
    assert isinstance(time_unit, str), "time_unit should be a str."
    assert time_unit in ["s", "ms", "us"], "time_unit should be 's', 'ms' or 'us'"

    if ep is None:
        ep = data.time_support
    else:
        assert isinstance(ep, (nap.IntervalSet)), "ep should be an IntervalSet object."

    if isinstance(minmax, float) or isinstance(minmax, int):
        minmax = np.array([minmax, minmax], dtype=np.float64)

    window = np.abs(nap.TsIndex.format_timestamps(np.array(minmax), time_unit))

    time_array = data.index.values
    data_array = data.values
    time_target_array = tref.index.values
    starts = ep.start
    ends = ep.end

    binsize = time_array[1] - time_array[0]
    idx1 = -np.arange(0, window[0] + binsize, binsize)[::-1][:-1]
    idx2 = np.arange(0, window[1] + binsize, binsize)[1:]
    time_idx = np.hstack((idx1, np.zeros(1), idx2))
    windowsize = np.array([idx1.shape[0], idx2.shape[0]])

    new_data_array = _perievent_continuous(
        time_array, data_array, time_target_array, starts, ends, windowsize
    )

    time_support = nap.IntervalSet(start=-window[0], end=window[1])

    if new_data_array.ndim == 2:
        return nap.TsdFrame(t=time_idx, d=new_data_array, time_support=time_support)
    else:
        return nap.TsdTensor(t=time_idx, d=new_data_array, time_support=time_support)

compute_event_trigger_average

compute_event_trigger_average(
    group,
    feature,
    binsize,
    windowsize=None,
    ep=None,
    time_unit="s",
)

Bin the event timestamps within binsize and compute the Event Trigger Average (ETA) within windowsize. If C is the event count matrix and feature is a Tsd array, the function computes the Hankel matrix H from windowsize=(-t1,+t2) by offseting the Tsd array.

The ETA is then defined as the dot product between H and C divided by the number of events.

The object feature can be any dimensions.

Parameters:

Name Type Description Default
group TsGroup

The group of Ts/Tsd objects that hold the trigger time.

required
feature (Tsd, TsdFrame or TsdTensor)

The feature to average.

required
binsize float or int

The bin size. Default is second. If different, specify with the parameter time_unit ('s' [default], 'ms', 'us').

required
windowsize tuple of float/int or float/int

The window size. Default is second. For example windowsize = (-1, 1) is equivalent to windowsize = 1 If different, specify with the parameter time_unit ('s' [default], 'ms', 'us').

None
ep IntervalSet

The epochs on which the average is computed

None
time_unit str

The time unit of the parameters. They have to be consistent for binsize and windowsize. ('s' [default], 'ms', 'us').

's'
Source code in pynapple/process/perievent.py
def compute_event_trigger_average(
    group,
    feature,
    binsize,
    windowsize=None,
    ep=None,
    time_unit="s",
):
    """
    Bin the event timestamps within binsize and compute the Event Trigger Average (ETA) within windowsize.
    If C is the event count matrix and `feature` is a Tsd array, the function computes
    the Hankel matrix H from windowsize=(-t1,+t2) by offseting the Tsd array.

    The ETA is then defined as the dot product between H and C divided by the number of events.

    The object feature can be any dimensions.

    Parameters
    ----------
    group : TsGroup
        The group of Ts/Tsd objects that hold the trigger time.
    feature : Tsd, TsdFrame or TsdTensor
        The feature to average.
    binsize : float or int
        The bin size. Default is second.
        If different, specify with the parameter time_unit ('s' [default], 'ms', 'us').
    windowsize : tuple of float/int or float/int
        The window size. Default is second. For example windowsize = (-1, 1) is equivalent to windowsize = 1
        If different, specify with the parameter time_unit ('s' [default], 'ms', 'us').
    ep : IntervalSet
        The epochs on which the average is computed
    time_unit : str, optional
        The time unit of the parameters. They have to be consistent for binsize and windowsize.
        ('s' [default], 'ms', 'us').
    """
    assert isinstance(group, nap.TsGroup), "group should be a TsGroup."
    assert isinstance(
        feature, (nap.Tsd, nap.TsdFrame, nap.TsdTensor)
    ), "Feature should be a Tsd, TsdFrame or TsdTensor"
    assert isinstance(binsize, (float, int)), "binsize should be int or float."
    assert isinstance(time_unit, str), "time_unit should be a str."
    assert time_unit in ["s", "ms", "us"], "time_unit should be 's', 'ms' or 'us'"

    if windowsize is not None:
        if isinstance(windowsize, tuple):
            assert (
                len(windowsize) == 2
            ), "windowsize should be a tuple of 2 elements (-t, +t)"
            assert all(
                [isinstance(t, (float, int)) for t in windowsize]
            ), "windowsize should be a tuple of int/float"
        else:
            assert isinstance(
                windowsize, (float, int)
            ), "windowsize should be a tuple of int/float or int/float."
            windowsize = (windowsize, windowsize)
    else:
        windowsize = (0.0, 0.0)

    if ep is not None:
        assert isinstance(ep, (nap.IntervalSet)), "ep should be an IntervalSet object."
    else:
        ep = feature.time_support

    binsize = nap.TsIndex.format_timestamps(
        np.array([binsize], dtype=np.float64), time_unit
    )[0]
    start = np.abs(
        nap.TsIndex.format_timestamps(
            np.array([windowsize[0]], dtype=np.float64), time_unit
        )[0]
    )
    end = np.abs(
        nap.TsIndex.format_timestamps(
            np.array([windowsize[1]], dtype=np.float64), time_unit
        )[0]
    )

    idx1 = -np.arange(0, start + binsize, binsize)[::-1][:-1]
    idx2 = np.arange(0, end + binsize, binsize)[1:]
    time_idx = np.hstack((idx1, np.zeros(1), idx2))

    eta = np.zeros((time_idx.shape[0], len(group), *feature.shape[1:]))

    windows = np.array([len(idx1), len(idx2)])

    # Bin the spike train
    count = group.count(binsize, ep)

    time_target_array = np.round(count.index.values - (binsize / 2), 9)
    count_array = count.values
    starts = ep.start
    ends = ep.end

    time_array = feature.index.values
    data_array = feature.values

    eta = _perievent_trigger_average(
        time_target_array,
        count_array,
        time_array,
        data_array,
        starts,
        ends,
        windows,
        binsize,
    )

    if eta.ndim == 2:
        return nap.TsdFrame(t=time_idx, d=eta, columns=group.index)
    else:
        return nap.TsdTensor(t=time_idx, d=eta)