Core methods#
Show code cell content
import pynapple as nap
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
custom_params = {"axes.spines.right": False, "axes.spines.top": False}
sns.set_theme(style="ticks", palette="colorblind", font_scale=1.5, rc=custom_params)
Interval sets methods#
Interaction between epochs#
epoch1 = nap.IntervalSet(start=0, end=10) # no time units passed. Default is us.
epoch2 = nap.IntervalSet(start=[5, 30], end=[20, 45])
print(epoch1, "\n")
print(epoch2, "\n")
start end
0 0 10
shape: (1, 2), time unit: sec.
start end
0 5 20
1 30 45
shape: (2, 2), time unit: sec.
union
#
epoch = epoch1.union(epoch2)
print(epoch)
start end
0 0 20
1 30 45
shape: (2, 2), time unit: sec.
intersect
#
epoch = epoch1.intersect(epoch2)
print(epoch)
start end
0 5 10
shape: (1, 2), time unit: sec.
set_diff
#
epoch = epoch1.set_diff(epoch2)
print(epoch)
start end
0 0 5
shape: (1, 2), time unit: sec.
split
#
Useful for chunking time series, the split
method splits an IntervalSet
in a new
IntervalSet
based on the interval_size
argument.
epoch = nap.IntervalSet(start=0, end=100)
print(epoch.split(10, time_units="s"))
start end
0 0 10
1 10 20
2 20 30
3 30 40
4 40 50
5 50 60
6 60 70
7 70 80
8 80 90
9 90 100
shape: (10, 2), time unit: sec.
Drop intervals#
epoch = nap.IntervalSet(start=[5, 30], end=[6, 45])
print(epoch)
start end
0 5 6
1 30 45
shape: (2, 2), time unit: sec.
drop_short_intervals
#
print(
epoch.drop_short_intervals(threshold=5)
)
start end
0 30 45
shape: (1, 2), time unit: sec.
drop_long_intervals
#
print(
epoch.drop_long_intervals(threshold=5)
)
start end
0 5 6
shape: (1, 2), time unit: sec.
merge_close_intervals
#
Show code cell source
epoch = nap.IntervalSet(start=[1, 7], end=[6, 45])
print(epoch)
start end
0 1 6
1 7 45
shape: (2, 2), time unit: sec.
If two intervals are closer than the threshold
argument, they are merged.
print(
epoch.merge_close_intervals(threshold=2.0)
)
start end
0 1 45
shape: (1, 2), time unit: sec.
Metadata#
One advantage of grouping time series is that metainformation can be added directly on an element-wise basis. In this case, we add labels to each Ts object when instantiating the group and after. We can then use this label to split the group. See the TsGroup documentation for a complete methodology for splitting TsGroup objects.
group = {
0: nap.Ts(t=np.sort(np.random.uniform(0, 100, 10))),
1: nap.Ts(t=np.sort(np.random.uniform(0, 100, 20))),
2: nap.Ts(t=np.sort(np.random.uniform(0, 100, 30))),
}
time_support = nap.IntervalSet(0, 100)
tsgroup = nap.TsGroup(group, time_support=time_support)
tsgroup['label1'] = np.random.randn(3)
tsgroup.set_info(label2 = ['a', 'b', 'c'])
print(tsgroup, "\n")
Index rate label1 label2
------- ------ -------- --------
0 0.1 -0.38498 a
1 0.2 -0.36197 b
2 0.3 0.97355 c
Time series method#
Show code cell content
tsdframe = nap.TsdFrame(t=np.arange(100), d=np.random.randn(100, 3), columns=['a', 'b', 'c'])
epochs = nap.IntervalSet([10, 65], [25, 80])
tsd = nap.Tsd(t=np.arange(0, 100, 1), d=np.sin(np.arange(0, 10, 0.1)))
restrict
#
restrict
is used to get time points within an IntervalSet
. This method is available
for TsGroup
, Tsd
, TsdFrame
, TsdTensor
and Ts
objects.
tsdframe.restrict(epochs)
Time (s) a b c
---------- -------- -------- --------
10.0 -1.29879 -0.37761 0.63836
11.0 0.31305 -1.21007 3.41824
12.0 -1.22761 0.66482 -0.28102
13.0 0.26912 0.02872 1.70389
14.0 -1.3437 1.27422 -0.96464
15.0 -0.17449 1.80624 -1.61886
16.0 -0.62451 -0.5072 0.94247
...
74.0 -0.60337 1.2595 0.47252
75.0 -0.62192 -0.68012 -0.24489
76.0 -1.22179 -0.23589 2.07311
77.0 0.75754 1.50113 0.99764
78.0 0.94284 -1.02706 0.409
79.0 -1.23968 -0.52289 1.09597
80.0 0.93847 -0.34655 -1.2611
dtype: float64, shape: (32, 3)
Show code cell source
plt.figure()
plt.plot(tsdframe.restrict(epochs))
[plt.axvspan(s, e, alpha=0.2) for s, e in epochs.values]
plt.xlabel("Time (s)")
plt.title("tsdframe.restrict(epochs)")
plt.xlim(0, 100)
plt.show()
This operation update the time support attribute accordingly.
print(epochs)
print(tsdframe.restrict(epochs).time_support)
start end
0 10 25
1 65 80
shape: (2, 2), time unit: sec.
start end
0 10 25
1 65 80
shape: (2, 2), time unit: sec.
count
#
count
the number of timestamps within bins or epochs of an IntervalSet
object.
This method is available for TsGroup
, Tsd
, TsdFrame
, TsdTensor
and Ts
objects.
With a defined bin size:
count1 = tsgroup.count(bin_size=1.0, time_units='s')
print(count1)
Time (s) 0 1 2
---------- --- --- ---
0.5 0 0 0
1.5 0 0 0
2.5 0 1 0
3.5 0 0 0
4.5 0 0 1
5.5 0 0 1
6.5 0 0 0
...
93.5 0 0 0
94.5 0 0 0
95.5 0 0 0
96.5 1 0 0
97.5 0 1 0
98.5 0 0 1
99.5 0 0 0
dtype: float64, shape: (100, 3)
Show code cell source
plt.figure()
plt.plot(count1[:,2], 'o-')
plt.title("tsgroup.count(bin_size=1.0)")
plt.plot(tsgroup[2].fillna(-1), '|', markeredgewidth=2)
[plt.axvline(t, linewidth=0.5, alpha=0.5) for t in np.arange(0, 21)]
plt.xlabel("Time (s)")
plt.xlim(0, 20)
plt.show()
With an IntervalSet
:
count_ep = tsgroup.count(ep=epochs)
print(count_ep)
Time (s) 0 1 2
---------- --- --- ---
17.5 4 4 7
72.5 1 3 6
dtype: float64, shape: (2, 3)
bin_average
#
bin_average
downsample time series by averaging data point falling within a bin.
This method is available for Tsd
, TsdFrame
and TsdTensor
.
tsdframe.bin_average(3.5)
Time (s) a b c
---------- -------- -------- --------
1.75 -0.19445 0.57608 0.72252
5.25 -0.19095 0.11687 0.03488
8.75 0.13184 -0.59322 1.22942
12.25 -0.21515 -0.17218 1.61371
15.75 -0.87916 0.04059 -0.51584
19.25 -0.62883 -0.05773 -0.07907
22.75 0.74808 -0.25512 -0.63578
...
75.25 -0.81569 0.1145 0.76691
78.75 0.34979 -0.09884 0.31038
82.25 -0.16756 -1.16021 -0.19153
85.75 0.38568 0.27616 0.73901
89.25 0.65452 0.70026 -0.41582
92.75 -0.47837 -0.45975 -0.31926
96.25 -1.5642 0.29827 -0.3323
dtype: float64, shape: (28, 3)
Show code cell source
bin_size = 3.5
plt.figure()
plt.plot(tsdframe[:,0], '.--', label="tsdframe[:,0]")
plt.plot(tsdframe[:,0].bin_average(bin_size), 'o-', label="new_tsdframe[:,0]")
plt.title(f"tsdframe.bin_average(bin_size={bin_size})")
[plt.axvline(t, linewidth=0.5, alpha=0.5) for t in np.arange(0, 21,bin_size)]
plt.xlabel("Time (s)")
plt.xlim(0, 20)
plt.legend(bbox_to_anchor=(1.0, 0.5, 0.5, 0.5))
plt.show()
interpolate
#
Theinterpolate
method of Tsd
, TsdFrame
and TsdTensor
can be used to fill gaps in a time series. It is a wrapper of numpy.interp
.
Show code cell content
tsd = nap.Tsd(t=np.arange(0, 25, 5), d=np.random.randn(5))
ts = nap.Ts(t=np.arange(0, 21, 1))
new_tsd = tsd.interpolate(ts)
Show code cell source
plt.figure()
plt.plot(new_tsd, '.-', label="new_tsd")
plt.plot(tsd, 'o', label="tsd")
plt.plot(ts.fillna(0), '+', label="ts")
plt.title("tsd.interpolate(ts)")
plt.xlabel("Time (s)")
plt.legend(bbox_to_anchor=(1.0, 0.5, 0.5, 0.5))
plt.show()
value_from
#
value_from
assign to every timestamps the closed value in time from another time series. Let’s define the time series we want to assign values from.
For every timestamps in tsgroup
, we want to assign the closest value in time from tsd
.
Show code cell content
tsd = nap.Tsd(t=np.arange(0, 100, 1), d=np.sin(np.arange(0, 10, 0.1)))
tsgroup_from_tsd = tsgroup.value_from(tsd)
We can display the first element of tsgroup
and tsgroup_sin
.
Show code cell source
plt.figure()
plt.plot(tsgroup[0].fillna(0), "|", label="tsgroup[0]", markersize=20, mew=3)
plt.plot(tsd, linewidth=2, label="tsd")
plt.plot(tsgroup_from_tsd[0], "o", label = "tsgroup_from_tsd[0]", markersize=20)
plt.title("tsgroup.value_from(tsd)")
plt.xlabel("Time (s)")
plt.yticks([-1, 0, 1])
plt.legend(bbox_to_anchor=(1.0, 0.5, 0.5, 0.5))
plt.show()
threshold
#
The method threshold
of Tsd
returns a new Tsd
with all the data above or
below a certain threshold. Default is above
. The time support
of the new Tsd
object get updated accordingly.
Show code cell content
tsd = nap.Tsd(t=np.arange(0, 100, 1), d=np.sin(np.arange(0, 10, 0.1)))
tsd_above = tsd.threshold(0.5, method='above')
This method can be used to isolate epochs for which a signal is above/below a certain threshold.
epoch_above = tsd_above.time_support
Show code cell source
plt.figure()
plt.plot(tsd, label="tsd")
plt.plot(tsd_above, 'o-', label="tsd_above")
[plt.axvspan(s, e, alpha=0.2) for s, e in epoch_above.values]
plt.axhline(0.5, linewidth=0.5, color='grey')
plt.legend()
plt.xlabel("Time (s)")
plt.title("tsd.threshold(0.5)")
plt.show()
Mapping between TsGroup
and Tsd
#
It’s is possible to transform a TsGroup
to Tsd
with the method
to_tsd
and a Tsd
to TsGroup
with the method to_tsgroup
.
This is useful to flatten the activity of a population in a single array.
tsd = tsgroup.to_tsd()
print(tsd)
Time (s)
------------ --
2.970909468 1
4.776047248 2
5.87049296 2
7.023850764 2
7.96902467 2
10.448590986 2
10.983792172 2
...
84.753482109 2
86.493418102 1
89.768121616 1
92.184028717 2
96.035215503 0
97.771961471 1
98.00524504 2
dtype: float64, shape: (60,)
The object tsd
contains all the timestamps of the tsgroup
with
the associated value being the index of the unit in the TsGroup
.
The method to_tsgroup
converts the Tsd
object back to the original TsGroup
.
back_to_tsgroup = tsd.to_tsgroup()
print(back_to_tsgroup)
Index rate
------- ------
0 0.1
1 0.2
2 0.3
Parameterizing a raster#
The method to_tsd
makes it easier to display a raster plot.
TsGroup
object can be plotted with plt.plot(tsgroup.to_tsd(), 'o')
.
Timestamps can be mapped to any values passed directly to the method
or by giving the name of a specific metadata name of the TsGroup
.
tsgroup['label'] = np.arange(3)*np.pi
print(tsgroup)
Index rate label1 label2 label
------- ------ -------- -------- -------
0 0.1 -0.38498 a 0
1 0.2 -0.36197 b 3.14159
2 0.3 0.97355 c 6.28319
Show code cell source
plt.figure()
plt.subplot(2,2,1)
plt.plot(tsgroup.to_tsd(), '|')
plt.title("tsgroup.to_tsd()")
plt.xlabel("Time (s)")
plt.subplot(2,2,2)
plt.plot(tsgroup.to_tsd([10,20,30]), '|')
plt.title("togroup.to_tsd([10,20,30])")
plt.xlabel("Time (s)")
plt.subplot(2,2,3)
plt.plot(tsgroup.to_tsd("label"), '|')
plt.title("togroup.to_tsd('label')")
plt.xlabel("Time (s)")
plt.tight_layout()
plt.show()