"""
Functions to compute correlograms of timestamps data.
"""
import inspect
from functools import wraps
from itertools import combinations, product
from numbers import Number
import numpy as np
import pandas as pd
from numba import jit
from .. import core as nap
def _validate_correlograms_inputs(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Validate each positional argument
sig = inspect.signature(func)
kwargs = sig.bind_partial(*args, **kwargs).arguments
# Only TypeError here
if getattr(func, "__name__") == "compute_crosscorrelogram" and isinstance(
kwargs["group"], (tuple, list)
):
if (
not all([isinstance(g, nap.TsGroup) for g in kwargs["group"]])
or len(kwargs["group"]) != 2
):
raise TypeError(
"Invalid type. Parameter group must be of type TsGroup or a tuple/list of (TsGroup, TsGroup)."
)
else:
if not isinstance(kwargs["group"], nap.TsGroup):
msg = "Invalid type. Parameter group must be of type TsGroup"
if getattr(func, "__name__") == "compute_crosscorrelogram":
msg = msg + " or a tuple/list of (TsGroup, TsGroup)."
raise TypeError(msg)
parameters_type = {
"binsize": Number,
"windowsize": Number,
"ep": nap.IntervalSet,
"norm": bool,
"time_units": str,
"reverse": bool,
"event": (nap.Ts, nap.Tsd),
}
for param, param_type in parameters_type.items():
if param in kwargs:
if not isinstance(kwargs[param], param_type):
raise TypeError(
f"Invalid type. Parameter {param} must be of type {param_type}."
)
# Call the original function with validated inputs
return func(**kwargs)
return wrapper
@jit(nopython=True, cache=True)
def _cross_correlogram(t1, t2, binsize, windowsize):
"""
Performs the discrete cross-correlogram of two time series.
The units should be in s for all arguments.
Return the firing rate of the series t2 relative to the timings of t1.
See compute_crosscorrelogram, compute_autocorrelogram and compute_eventcorrelogram
for wrappers of this function.
Parameters
----------
t1 : numpy.ndarray
The timestamps of the reference time series (in seconds)
t2 : numpy.ndarray
The timestamps of the target time series (in seconds)
binsize : float
The bin size (in seconds)
windowsize : float
The window size (in seconds)
Returns
-------
numpy.ndarray
The cross-correlogram
numpy.ndarray
Center of the bins (in s)
"""
# nbins = ((windowsize//binsize)*2)
nt1 = len(t1)
nt2 = len(t2)
nbins = int((windowsize * 2) // binsize)
if np.floor(nbins / 2) * 2 == nbins:
nbins = nbins + 1
w = (nbins / 2) * binsize
C = np.zeros(nbins)
i2 = 0
for i1 in range(nt1):
lbound = t1[i1] - w
while i2 < nt2 and t2[i2] < lbound:
i2 = i2 + 1
while i2 > 0 and t2[i2 - 1] > lbound:
i2 = i2 - 1
rbound = lbound
leftb = i2
for j in range(nbins):
k = 0
rbound = rbound + binsize
while leftb < nt2 and t2[leftb] < rbound:
leftb = leftb + 1
k = k + 1
C[j] += k
C = C / (nt1 * binsize)
m = -w + binsize / 2
B = np.zeros(nbins)
for j in range(nbins):
B[j] = m + j * binsize
return C, B
[docs]
@_validate_correlograms_inputs
def compute_autocorrelogram(
group, binsize, windowsize, ep=None, norm=True, time_units="s"
):
"""
Computes the autocorrelogram of a group of Ts/Tsd objects.
The group can be passed directly as a TsGroup object.
Parameters
----------
group : TsGroup
The group of Ts/Tsd objects to auto-correlate
binsize : float
The bin size. Default is second.
If different, specify with the parameter time_units ('s' [default], 'ms', 'us').
windowsize : float
The window size. Default is second.
If different, specify with the parameter time_units ('s' [default], 'ms', 'us').
ep : IntervalSet
The epoch on which auto-corrs are computed.
If None, the epoch is the time support of the group.
norm : bool, optional
If True, autocorrelograms are normalized to baseline (i.e. divided by the average rate)
If False, autoorrelograms are returned as the rate (Hz) of the time series (relative to itself)
time_units : str, optional
The time units of the parameters. They have to be consistent for binsize and windowsize.
('s' [default], 'ms', 'us').
Returns
-------
pandas.DataFrame
_
Raises
------
RuntimeError
group must be TsGroup
"""
if isinstance(ep, nap.IntervalSet):
newgroup = group.restrict(ep)
else:
newgroup = group
autocorrs = {}
binsize = nap.TsIndex.format_timestamps(
np.array([binsize], dtype=np.float64), time_units
)[0]
windowsize = nap.TsIndex.format_timestamps(
np.array([windowsize], dtype=np.float64), time_units
)[0]
for n in newgroup.keys():
spk_time = newgroup[n].index
auc, times = _cross_correlogram(spk_time, spk_time, binsize, windowsize)
autocorrs[n] = pd.Series(index=np.round(times, 6), data=auc, dtype="float")
autocorrs = pd.DataFrame.from_dict(autocorrs)
if norm:
autocorrs = autocorrs / newgroup.get_info("rate")
# Bug here
if 0 in autocorrs.index:
autocorrs.loc[0] = 0.0
return autocorrs.astype("float")
[docs]
@_validate_correlograms_inputs
def compute_crosscorrelogram(
group, binsize, windowsize, ep=None, norm=True, time_units="s", reverse=False
):
"""
Computes all the pairwise cross-correlograms for TsGroup or list/tuple of two TsGroup.
If input is TsGroup only, the reference Ts/Tsd and target are chosen based on the builtin itertools.combinations function.
For example if indexes are [0,1,2], the function computes cross-correlograms
for the pairs (0,1), (0, 2), and (1, 2). The left index gives the reference time series.
To reverse the order, set reverse=True.
If input is tuple/list of TsGroup, for example group=(group1, group2), the reference for each pairs comes from group1.
Parameters
----------
group : TsGroup or tuple/list of two TsGroups
binsize : float
The bin size. Default is second.
If different, specify with the parameter time_units ('s' [default], 'ms', 'us').
windowsize : float
The window size. Default is second.
If different, specify with the parameter time_units ('s' [default], 'ms', 'us').
ep : IntervalSet
The epoch on which cross-corrs are computed.
If None, the epoch is the time support of the group.
norm : bool, optional
If True (default), cross-correlograms are normalized to baseline (i.e. divided by the average rate of the target time series)
If False, cross-orrelograms are returned as the rate (Hz) of the target time series ((relative to the reference time series)
time_units : str, optional
The time units of the parameters. They have to be consistent for binsize and windowsize.
('s' [default], 'ms', 'us').
reverse : bool, optional
To reverse the pair order if input is TsGroup
Returns
-------
pandas.DataFrame
_
Raises
------
RuntimeError
group must be TsGroup or tuple/list of two TsGroups
"""
crosscorrs = {}
binsize = nap.TsIndex.format_timestamps(
np.array([binsize], dtype=np.float64), time_units
)[0]
windowsize = nap.TsIndex.format_timestamps(
np.array([windowsize], dtype=np.float64), time_units
)[0]
if isinstance(group, tuple):
if isinstance(ep, nap.IntervalSet):
newgroup = [group[i].restrict(ep) for i in range(2)]
else:
newgroup = group
pairs = product(list(newgroup[0].keys()), list(newgroup[1].keys()))
for i, j in pairs:
spk1 = newgroup[0][i].index
spk2 = newgroup[1][j].index
auc, times = _cross_correlogram(spk1, spk2, binsize, windowsize)
if norm:
auc /= newgroup[1][j].rate
crosscorrs[(i, j)] = pd.Series(index=times, data=auc, dtype="float")
crosscorrs = pd.DataFrame.from_dict(crosscorrs)
else:
if isinstance(ep, nap.IntervalSet):
newgroup = group.restrict(ep)
else:
newgroup = group
neurons = list(newgroup.keys())
pairs = list(combinations(neurons, 2))
if reverse:
pairs = list(map(lambda n: (n[1], n[0]), pairs))
for i, j in pairs:
spk1 = newgroup[i].index
spk2 = newgroup[j].index
auc, times = _cross_correlogram(spk1, spk2, binsize, windowsize)
crosscorrs[(i, j)] = pd.Series(index=times, data=auc, dtype="float")
crosscorrs = pd.DataFrame.from_dict(crosscorrs)
if norm:
freq = newgroup.get_info("rate")
freq2 = pd.Series(
index=pairs, data=list(map(lambda n: freq.loc[n[1]], pairs))
)
crosscorrs = crosscorrs / freq2
return crosscorrs.astype("float")
[docs]
@_validate_correlograms_inputs
def compute_eventcorrelogram(
group, event, binsize, windowsize, ep=None, norm=True, time_units="s"
):
"""
Computes the correlograms of a group of Ts/Tsd objects with another single Ts/Tsd object
The time of reference is the event times.
Parameters
----------
group : TsGroup
The group of Ts/Tsd objects to correlate with the event
event : Ts/Tsd
The event to correlate the each of the time series in the group with.
binsize : float
The bin size. Default is second.
If different, specify with the parameter time_units ('s' [default], 'ms', 'us').
windowsize : float
The window size. Default is second.
If different, specify with the parameter time_units ('s' [default], 'ms', 'us').
ep : IntervalSet
The epoch on which cross-corrs are computed.
If None, the epoch is the time support of the event.
norm : bool, optional
If True (default), cross-correlograms are normalized to baseline (i.e. divided by the average rate of the target time series)
If False, cross-orrelograms are returned as the rate (Hz) of the target time series (relative to the event time series)
time_units : str, optional
The time units of the parameters. They have to be consistent for binsize and windowsize.
('s' [default], 'ms', 'us').
Returns
-------
pandas.DataFrame
_
Raises
------
RuntimeError
group must be TsGroup
"""
if ep is None:
ep = event.time_support
tsd1 = event.index
else:
tsd1 = event.restrict(ep).index
newgroup = group.restrict(ep)
crosscorrs = {}
binsize = nap.TsIndex.format_timestamps(
np.array([binsize], dtype=np.float64), time_units
)[0]
windowsize = nap.TsIndex.format_timestamps(
np.array([windowsize], dtype=np.float64), time_units
)[0]
for n in newgroup.keys():
spk_time = newgroup[n].index
auc, times = _cross_correlogram(tsd1, spk_time, binsize, windowsize)
crosscorrs[n] = pd.Series(index=times, data=auc, dtype="float")
crosscorrs = pd.DataFrame.from_dict(crosscorrs)
if norm:
crosscorrs = crosscorrs / newgroup.get_info("rate")
return crosscorrs.astype("float")