"""
Decoding functions for timestamps data (spike times). The first argument is always a tuning curves object.
"""
import numpy as np
from .. import core as nap
[docs]
def decode_1d(tuning_curves, group, ep, bin_size, time_units="s", feature=None):
"""
Perform Bayesian decoding over a one dimensional feature.
See:
Zhang, K., Ginzburg, I., McNaughton, B. L., & Sejnowski, T. J.
(1998). Interpreting neuronal population activity by
reconstruction: unified framework with application to
hippocampal place cells. Journal of neurophysiology, 79(2),
1017-1044.
Parameters
----------
tuning_curves : pandas.DataFrame
Each column is the tuning curve of one neuron relative to the feature.
Index should be the center of the bin.
group : TsGroup, TsdFrame or dict of Ts/Tsd object.
A group of neurons with the same index as tuning curves column names.
You may also pass a TsdFrame with smoothed rates (recommended).
ep : IntervalSet
The epoch on which decoding is computed
bin_size : float
Bin size. Default is second. Use the parameter time_units to change it.
time_units : str, optional
Time unit of the bin size ('s' [default], 'ms', 'us').
feature : Tsd, optional
The 1d feature used to compute the tuning curves. Used to correct for occupancy.
If feature is not passed, the occupancy is uniform.
Returns
-------
Tsd
The decoded feature
TsdFrame
The probability distribution of the decoded feature for each time bin
Raises
------
RuntimeError
If group is not a dict of Ts/Tsd or TsGroup.
If different size of neurons for tuning_curves and group.
If indexes don't match between tuning_curves and group.
"""
if isinstance(group, nap.TsdFrame):
newgroup = group.restrict(ep)
if tuning_curves.shape[1] != newgroup.shape[1]:
raise RuntimeError("Different shapes for tuning_curves and group")
if not np.all(tuning_curves.columns.values == np.array(newgroup.columns)):
raise RuntimeError("Different indices for tuning curves and group keys")
count = group
elif isinstance(group, nap.TsGroup):
newgroup = group.restrict(ep)
if tuning_curves.shape[1] != len(newgroup):
raise RuntimeError("Different shapes for tuning_curves and group")
if not np.all(tuning_curves.columns.values == np.array(newgroup.keys())):
raise RuntimeError("Different indices for tuning curves and group keys")
# Bin spikes
count = newgroup.count(bin_size, ep, time_units)
elif isinstance(group, dict):
newgroup = nap.TsGroup(group, time_support=ep)
count = newgroup.count(bin_size, ep, time_units)
else:
raise RuntimeError("Unknown format for group")
# Occupancy
if feature is None:
occupancy = np.ones(tuning_curves.shape[0])
elif isinstance(feature, nap.Tsd):
diff = np.diff(tuning_curves.index.values)
bins = tuning_curves.index.values[:-1] - diff / 2
bins = np.hstack(
(bins, [bins[-1] + diff[-1], bins[-1] + 2 * diff[-1]])
) # assuming the size of the last 2 bins is equal
occupancy, _ = np.histogram(feature.values, bins)
else:
raise RuntimeError("Unknown format for feature in decode_1d")
# Transforming to pure numpy array
tc = tuning_curves.values
ct = count.values
bin_size_s = nap.TsIndex.format_timestamps(
np.array([bin_size], dtype=np.float64), time_units
)[0]
p1 = np.exp(-bin_size_s * tc.sum(1))
p2 = occupancy / occupancy.sum()
ct2 = np.tile(ct[:, np.newaxis, :], (1, tc.shape[0], 1))
p3 = np.prod(tc**ct2, -1)
p = p1 * p2 * p3
p = p / p.sum(1)[:, np.newaxis]
idxmax = np.argmax(p, 1)
p = nap.TsdFrame(
t=count.index, d=p, time_support=ep, columns=tuning_curves.index.values
)
decoded = nap.Tsd(
t=count.index, d=tuning_curves.index.values[idxmax], time_support=ep
)
return decoded, p
[docs]
def decode_2d(tuning_curves, group, ep, bin_size, xy, time_units="s", features=None):
"""
Performs Bayesian decoding over 2 dimensional features.
See:
Zhang, K., Ginzburg, I., McNaughton, B. L., & Sejnowski, T. J.
(1998). Interpreting neuronal population activity by
reconstruction: unified framework with application to
hippocampal place cells. Journal of neurophysiology, 79(2),
1017-1044.
Parameters
----------
tuning_curves : dict
Dictionary of 2d tuning curves (one for each neuron).
group : TsGroup, TsdFrame or dict of Ts/Tsd object.
A group of neurons with the same keys as tuning_curves dictionary.
You may also pass a TsdFrame with smoothed rates (recommended).
ep : IntervalSet
The epoch on which decoding is computed
bin_size : float
Bin size. Default is second. Use the parameter time_units to change it.
xy : tuple
A tuple of bin positions for the tuning curves i.e. xy=(x,y)
time_units : str, optional
Time unit of the bin size ('s' [default], 'ms', 'us').
features : TsdFrame
The 2 columns features used to compute the tuning curves. Used to correct for occupancy.
If feature is not passed, the occupancy is uniform.
Returns
-------
Tsd
The decoded feature in 2d
numpy.ndarray
The probability distribution of the decoded trajectory for each time bin
Raises
------
RuntimeError
If group is not a dict of Ts/Tsd or TsGroup.
If different size of neurons for tuning_curves and group.
If indexes don't match between tuning_curves and group.
"""
if type(group) is nap.TsdFrame:
newgroup = group.restrict(ep)
numcells = newgroup.shape[1]
if len(tuning_curves) != numcells:
raise RuntimeError("Different shapes for tuning_curves and group")
if not np.all(
np.array(list(tuning_curves.keys())) == np.array(newgroup.columns)
):
raise RuntimeError("Different indices for tuning curves and group keys")
count = group
elif type(group) is nap.TsGroup:
newgroup = group.restrict(ep)
numcells = len(newgroup)
if len(tuning_curves) != numcells:
raise RuntimeError("Different shapes for tuning_curves and group")
if not np.all(
np.array(list(tuning_curves.keys())) == np.array(newgroup.keys())
):
raise RuntimeError("Different indices for tuning curves and group keys")
count = newgroup.count(bin_size, ep, time_units)
elif type(group) is dict:
newgroup = nap.TsGroup(group, time_support=ep)
count = newgroup.count(bin_size, ep, time_units)
else:
raise RuntimeError("Unknown format for group")
indexes = list(tuning_curves.keys())
# Occupancy
if features is None:
occupancy = np.ones_like(tuning_curves[indexes[0]]).flatten()
else:
binsxy = []
for i in range(len(xy)):
diff = np.diff(xy[i])
bins = xy[i][:-1] - diff / 2
bins = np.hstack(
(bins, [bins[-1] + diff[-1], bins[-1] + 2 * diff[-1]])
) # assuming the size of the last 2 bins is equal
binsxy.append(bins)
occupancy, _, _ = np.histogram2d(
features[:, 0].values, features[:, 1].values, [binsxy[0], binsxy[1]]
)
occupancy = occupancy.flatten()
# Transforming to pure numpy array
tc = np.array([tuning_curves[i] for i in tuning_curves.keys()])
tc = tc.reshape(tc.shape[0], np.prod(tc.shape[1:]))
tc = tc.T
ct = count.values
bin_size_s = nap.TsIndex.format_timestamps(
np.array([bin_size], dtype=np.float64), time_units
)[0]
p1 = np.exp(-bin_size_s * np.nansum(tc, 1))
p2 = occupancy / occupancy.sum()
ct2 = np.tile(ct[:, np.newaxis, :], (1, tc.shape[0], 1))
p3 = np.nanprod(tc**ct2, -1)
p = p1 * p2 * p3
p = p / p.sum(1)[:, np.newaxis]
idxmax = np.argmax(p, 1)
p = p.reshape(p.shape[0], len(xy[0]), len(xy[1]))
idxmax2d = np.unravel_index(idxmax, (len(xy[0]), len(xy[1])))
if features is not None:
cols = features.columns
else:
cols = np.arange(2)
decoded = nap.TsdFrame(
t=count.index,
d=np.vstack((xy[0][idxmax2d[0]], xy[1][idxmax2d[1]])).T,
time_support=ep,
columns=cols,
)
return decoded, p