pynapple.core.ts_group.TsGroup#

class pynapple.core.ts_group.TsGroup(data, time_support=None, time_units='s', bypass_check=False, **kwargs)[source]#

Bases: UserDict

Dictionary-like object to group objects with different timestamps (for example timestamps of spikes of a population of neurons).

time_support#

The time support of the TsGroup

Type:

IntervalSet

rates#

The rate of each element of the TsGroup

Type:

pandas.Series

__init__(data, time_support=None, time_units='s', bypass_check=False, **kwargs)[source]#

TsGroup Initializer.

Parameters:
  • data (dict or iterable) – Dictionary or iterable of Ts/Tsd objects. The keys should be integer-convertible; if a non-dict iterator is passed, its values will be used to create a dict with integer keys.

  • time_support (IntervalSet, optional) – The time support of the TsGroup. Ts/Tsd objects will be restricted to the time support if passed. If no time support is specified, TsGroup will merge time supports from all the Ts/Tsd objects in data.

  • time_units (str, optional) – Time units if data does not contain Ts/Tsd objects (‘us’, ‘ms’, ‘s’ [default]).

  • bypass_check (bool, optional) – To avoid checking that each element is within time_support. Useful to speed up initialization of TsGroup when Ts/Tsd objects have already been restricted beforehand

  • **kwargs – Meta-info about the Ts/Tsd objects. Can be either pandas.Series, numpy.ndarray, list or tuple Note that the index should match the index of the input dictionary if pandas Series

Raises:
  • RuntimeError – Raise error if the union of time support of Ts/Tsd object is empty.

  • ValueError

    • If a key cannot be converted to integer. - If a key was a floating point with non-negligible decimal part. - If the converted keys are not unique, i.e. {1: ts_2, “2”: ts_2} is valid, {1: ts_2, “1”: ts_2} is invalid.

Methods

__init__(data[, time_support, time_units, ...])

TsGroup Initializer.

clear()

copy()

count(*args[, dtype])

Count occurences of events within bin_size or within a set of bins defined as an IntervalSet.

fromkeys(iterable[, value])

get(start[, end, time_units])

Slice the TsGroup object from start to end such that all the timestamps within the group satisfy start<=t<=end.

get_info(key)

Returns the metainfo located in one column.

getby_category(key)

Return a list of TsGroup grouped by category.

getby_intervals(key, bins)

Return a list of TsGroup binned.

getby_threshold(key, thr[, op])

Return a TsGroup with all Ts/Tsd objects with values above threshold for metainfo under key.

items()

Return a list of key/object.

keys()

Return index/keys of TsGroup

merge(*tsgroups[, reset_index, ...])

Merge the TsGroup object with other TsGroup objects.

merge_group(*tsgroups[, reset_index, ...])

Merge multiple TsGroup objects into a single TsGroup object.

pop(k[,d])

If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()

as a 2-tuple; but raise KeyError if D is empty.

restrict(ep)

Restricts a TsGroup object to a set of time intervals delimited by an IntervalSet object

save(filename)

Save TsGroup object in npz format.

set_info(*args, **kwargs)

Add metadata information about the TsGroup.

setdefault(k[,d])

to_tsd(*args)

Convert TsGroup to a Tsd.

update([E, ]**F)

If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

value_from(tsd[, ep])

Replace the value of each Ts/Tsd object within the Ts group with the closest value from tsd argument

values()

Return a list of all the Ts/Tsd objects in the TsGroup

Attributes

metadata_columns

Returns list of metadata columns

rates

Return the rates of each element of the group in Hz

clear() None.  Remove all items from D.#
copy()#
count(*args, dtype=None, **kwargs)[source]#

Count occurences of events within bin_size or within a set of bins defined as an IntervalSet. You can call this function in multiple ways :

1. tsgroup.count(bin_size=1, time_units = ‘ms’) -> Count occurence of events within a 1 ms bin defined on the time support of the object.

2. tsgroup.count(1, ep=my_epochs) -> Count occurent of events within a 1 second bin defined on the IntervalSet my_epochs.

3. tsgroup.count(ep=my_bins) -> Count occurent of events within each epoch of the intervalSet object my_bins

4. tsgroup.count() -> Count occurent of events within each epoch of the time support.

bin_size should be seconds unless specified. If bin_size is used and no epochs is passed, the data will be binned based on the time support of the object.

Parameters:
  • bin_size (None or float, optional) – The bin size (default is second)

  • ep (None or IntervalSet, optional) – IntervalSet to restrict the operation

  • time_units (str, optional) – Time units of bin size (‘us’, ‘ms’, ‘s’ [default])

  • dtype (type, optional) – Data type for the count. Default is np.int64.

Returns:

out – A TsdFrame with the columns being the index of each item in the TsGroup.

Return type:

TsdFrame

Examples

This example shows how to count events within bins of 0.1 second for the first 100 seconds.

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)
>>> ep = nap.IntervalSet(start=0, end=100, time_units='s')
>>> bincount = tsgroup.count(0.1, ep)
>>> bincount
          0  1  2
Time (s)
0.05      0  0  0
0.15      0  0  0
0.25      0  0  1
0.35      0  0  0
0.45      0  0  0
...      .. .. ..
99.55     0  1  1
99.65     0  0  0
99.75     0  0  1
99.85     0  0  0
99.95     1  1  1
[1000 rows x 3 columns]
classmethod fromkeys(iterable, value=None)#
get(start, end=None, time_units='s')[source]#

Slice the TsGroup object from start to end such that all the timestamps within the group satisfy start<=t<=end. If end is None, only the timepoint closest to start is returned.

By default, the time support doesn’t change. If you want to change the time support, use the restrict function.

Parameters:
  • start (float or int) – The start (or closest time point if end is None)

  • end (float or int or None) – The end

get_info(key)[source]#

Returns the metainfo located in one column. The key for the column frequency is “rate”.

Parameters:

key (str) – One of the metainfo columns name

Returns:

The metainfo

Return type:

pandas.Series

getby_category(key)[source]#

Return a list of TsGroup grouped by category.

Parameters:

key (str) – One of the metainfo columns name

Returns:

A dictionary of TsGroup

Return type:

dict

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp, group = [0,1,1])
  Index    Freq. (Hz)    group
-------  ------------  -------
      0             1        0
      1             2        1
      2             4        1

This exemple shows how to group the TsGroup according to one metainfo key.

>>> newtsgroup = tsgroup.getby_category('group')
>>> newtsgroup
{0:   Index    Freq. (Hz)    group
 -------  ------------  -------
       0             1        0,
 1:   Index    Freq. (Hz)    group
 -------  ------------  -------
       1             2        1
       2             4        1}
getby_intervals(key, bins)[source]#

Return a list of TsGroup binned.

Parameters:
  • key (str) – One of the metainfo columns name

  • bins (numpy.ndarray or list) – The bin intervals

Returns:

A list of TsGroup

Return type:

list

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp, alpha = np.arange(3))
  Index    Freq. (Hz)    alpha
-------  ------------  -------
      0             1        0
      1             2        1
      2             4        2

This exemple shows how to bin the TsGroup according to one metainfo key.

>>> newtsgroup, bincenter = tsgroup.getby_intervals('alpha', [0, 1, 2])
>>> newtsgroup
[  Index    Freq. (Hz)    alpha
 -------  ------------  -------
       0             1        0,
   Index    Freq. (Hz)    alpha
 -------  ------------  -------
       1             2        1]

By default, the function returns the center of the bins.

>>> bincenter
array([0.5, 1.5])
getby_threshold(key, thr, op='>')[source]#

Return a TsGroup with all Ts/Tsd objects with values above threshold for metainfo under key.

Parameters:
  • key (str) – One of the metainfo columns name

  • thr (float) – THe value for thresholding

  • op (str, optional) – The type of operation. Possibilities are ‘>’, ‘<’, ‘>=’ or ‘<=’.

Returns:

The new TsGroup

Return type:

TsGroup

Raises:

RuntimeError – Raise eror is operation is not recognized.

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)
  Index    Freq. (Hz)
-------  ------------
      0             1
      1             2
      2             4

This exemple shows how to get a new TsGroup with all elements for which the metainfo frequency is above 1.

>>> newtsgroup = tsgroup.getby_threshold('freq', 1, op = '>')
  Index    Freq. (Hz)
-------  ------------
      1             2
      2             4
items()[source]#

Return a list of key/object.

Returns:

List of tuples

Return type:

list

keys()[source]#

Return index/keys of TsGroup

Returns:

List of keys

Return type:

list

merge(*tsgroups, reset_index=False, reset_time_support=False, ignore_metadata=False)[source]#

Merge the TsGroup object with other TsGroup objects. Common uses include adding more neurons/channels (supposing each Ts/Tsd corresponds to data from a neuron/channel) or adding more trials (supposing each Ts/Tsd corresponds to data from a trial).

Parameters:
  • *tsgroups (TsGroup) – The TsGroup objects to merge with

  • reset_index (bool, optional) – If True, the keys will be reset to range(len(data)) If False, the keys of the TsGroup objects should be non-overlapping and will be preserved

  • reset_time_support (bool, optional) – If True, the merged TsGroup will merge time supports from all the Ts/Tsd objects in data If False, the time support of the TsGroup objects should be the same and will be preserved

  • ignore_metadata (bool, optional) – If True, the merged TsGroup will not have any metadata columns other than ‘rate’ If False, all metadata columns should be the same and all metadata will be concatenated

Returns:

A TsGroup of merged objects

Return type:

TsGroup

Raises:
  • TypeError – If the input objects are not TsGroup objects

  • ValueError – If ignore_metadata=False but metadata columns are not the same If reset_index=False but keys overlap If reset_time_support=False but time supports are not the same

Examples

>>> import pynapple as nap
>>> time_support_a = nap.IntervalSet(start=-1, end=1, time_units='s')
>>> time_support_b = nap.IntervalSet(start=-5, end=5, time_units='s')
>>> dict1 = {0: nap.Ts(t=[-1, 0, 1], time_units='s')}
>>> tsgroup1 = nap.TsGroup(dict1, time_support=time_support_a)
>>> dict2 = {10: nap.Ts(t=[-1, 0, 1], time_units='s')}
>>> tsgroup2 = nap.TsGroup(dict2, time_support=time_support_a)
>>> dict3 = {0: nap.Ts(t=[-.1, 0, .1], time_units='s')}
>>> tsgroup3 = nap.TsGroup(dict3, time_support=time_support_a)
>>> dict4 = {10: nap.Ts(t=[-1, 0, 1], time_units='s')}
>>> tsgroup4 = nap.TsGroup(dict2, time_support=time_support_b)

Merge with default options if have the same time support and non-overlapping indexes:

>>> tsgroup_12 = tsgroup1.merge(tsgroup2)
>>> tsgroup_12
Index    rate
-------  ------
     0     1.5
    10     1.5

Set reset_index=True if indexes are overlapping:

>>> tsgroup_13 = tsgroup1.merge(tsgroup3, reset_index=True)
>>> tsgroup_13
Index    rate
-------  ------
      0     1.5
      1     1.5

Set reset_time_support=True if time supports are different:

>>> tsgroup_14 = tsgroup1.merge(tsgroup4, reset_time_support=True)
>>> tsgroup_14
>>> tsgroup_14.time_support
Index    rate
-------  ------
      0     0.3
     10     0.3

start end

0 -5 5 shape: (1, 2), time unit: sec.

See also

[TsGroup.merge_group](./#pynapple.core.ts_group.TsGroup.merge_group)

static merge_group(*tsgroups, reset_index=False, reset_time_support=False, ignore_metadata=False)[source]#

Merge multiple TsGroup objects into a single TsGroup object.

Parameters:
  • *tsgroups (TsGroup) – The TsGroup objects to merge

  • reset_index (bool, optional) – If True, the keys will be reset to range(len(data)) If False, the keys of the TsGroup objects should be non-overlapping and will be preserved

  • reset_time_support (bool, optional) – If True, the merged TsGroup will merge time supports from all the Ts/Tsd objects in data If False, the time support of the TsGroup objects should be the same and will be preserved

  • ignore_metadata (bool, optional) – If True, the merged TsGroup will not have any metadata columns other than ‘rate’ If False, all metadata columns should be the same and all metadata will be concatenated

Returns:

A TsGroup of merged objects

Return type:

TsGroup

Raises:
  • TypeError – If the input objects are not TsGroup objects

  • ValueError – If ignore_metadata=False but metadata columns are not the same If reset_index=False but keys overlap If reset_time_support=False but time supports are not the same

property metadata_columns#

Returns list of metadata columns

pop(k[, d]) v, remove specified key and return the corresponding value.#

If key is not found, d is returned if given, otherwise KeyError is raised.

popitem() (k, v), remove and return some (key, value) pair#

as a 2-tuple; but raise KeyError if D is empty.

property rates#

Return the rates of each element of the group in Hz

restrict(ep)[source]#

Restricts a TsGroup object to a set of time intervals delimited by an IntervalSet object

Parameters:

ep (IntervalSet) – the IntervalSet object

Returns:

TsGroup object restricted to ep

Return type:

TsGroup

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)
>>> ep = nap.IntervalSet(start=0, end=100, time_units='s')
>>> newtsgroup = tsgroup.restrict(ep)

All objects within the TsGroup automatically inherit the epochs defined by ep.

>>> newtsgroup.time_support
   start    end
0    0.0  100.0
>>> newtsgroup[0].time_support
   start    end
0    0.0  100.0
save(filename)[source]#

Save TsGroup object in npz format. The file will contain the timestamps, the data (if group of Tsd), group index, the time support and the metadata

The main purpose of this function is to save small/medium sized TsGroup objects.

The function will “flatten” the TsGroup by sorting all the timestamps and assigning to each the corresponding index. Typically, a TsGroup like this :

>>> TsGroup({
    0 : Tsd(t=[0, 2, 4], d=[1, 2, 3])
    1 : Tsd(t=[1, 5], d=[5, 6])})

will be saved as npz with the following keys:

>>> {
    't' : [0, 1, 2, 4, 5],
    'd' : [1, 5, 2, 3, 5],
    'index' : [0, 1, 0, 0, 1],
    'start' : [0],
    'end' : [5],
    'keys' : [0, 1],
    'type' : 'TsGroup'
}

Metadata are saved by columns with the column name as the npz key. To avoid potential conflicts, make sure the columns name of the metadata are different from [‘t’, ‘d’, ‘start’, ‘end’, ‘index’, ‘keys’]

You can load the object with nap.load_file. Default keys are ‘t’, ‘d’(optional), ‘start’, ‘end’, ‘index’, ‘keys’ and ‘type’. See the example below.

Parameters:

filename (str) – The filename

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> tsgroup = nap.TsGroup({
    0 : nap.Ts(t=np.array([0.0, 2.0, 4.0])),
    6 : nap.Ts(t=np.array([1.0, 5.0]))
    },
    group = np.array([0, 1]),
    location = np.array(['right foot', 'left foot'])
    )
>>> tsgroup
  Index    rate    group  location
-------  ------  -------  ----------
      0     0.6        0  right foot
      6     0.4        1  left foot
>>> tsgroup.save("my_tsgroup.npz")

To get back to pynapple, you can use the nap.load_file function :

>>> tsgroup = nap.load_file("my_tsgroup.npz")
>>> tsgroup
  Index    rate    group  location
-------  ------  -------  ----------
      0     0.6        0  right foot
      6     0.4        1  left foot
Raises:

RuntimeError – If filename is not str, path does not exist or filename is a directory.

set_info(*args, **kwargs)[source]#

Add metadata information about the TsGroup. Metadata are saved as a DataFrame.

Parameters:
  • *args – pandas.Dataframe or list of pandas.DataFrame

  • **kwargs – Can be either pandas.Series, numpy.ndarray, list or tuple

Raises:
  • RuntimeError – Raise an error if no column labels are found when passing simple arguments, indexes are not equals for a pandas series,+ not the same length when passing numpy array.

  • TypeError – If some of the provided metadata could not be set.

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)

To add metadata with a pandas.DataFrame:

>>> import pandas as pd
>>> structs = pd.DataFrame(index = [0,1,2], data=['pfc','pfc','ca1'], columns=['struct'])
>>> tsgroup.set_info(structs)
>>> tsgroup
  Index    Freq. (Hz)  struct
-------  ------------  --------
      0             1  pfc
      1             2  pfc
      2             4  ca1

To add metadata with a pd.Series, numpy.ndarray, list or tuple:

>>> hd = pd.Series(index = [0,1,2], data = [0,1,1])
>>> tsgroup.set_info(hd=hd)
>>> tsgroup
  Index    Freq. (Hz)  struct      hd
-------  ------------  --------  ----
      0             1  pfc          0
      1             2  pfc          1
      2             4  ca1          1
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D#
to_tsd(*args)[source]#

Convert TsGroup to a Tsd. The timestamps of the TsGroup are merged together and sorted.

Parameters:

*args – string, list, numpy.ndarray or pandas.Series

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> tsgroup = nap.TsGroup({0:nap.Ts(t=np.array([0, 1])), 5:nap.Ts(t=np.array([2, 3]))})
Index    rate
-------  ------
0       1
5       1

By default, the values of the Tsd is the index of the timestamp in the TsGroup:

>>> tsgroup.to_tsd()
Time (s)
0.0    0.0
1.0    0.0
2.0    5.0
3.0    5.0
dtype: float64

Values can be inherited from the metadata of the TsGroup by giving the key of the corresponding columns.

>>> tsgroup.set_info( phase=np.array([np.pi, 2*np.pi]) ) # assigning a phase to my 2 elements of the TsGroup
>>> tsgroup.to_tsd("phase")
Time (s)
0.0    3.141593
1.0    3.141593
2.0    6.283185
3.0    6.283185
dtype: float64

Values can also be passed directly to the function from a list, numpy.ndarray or pandas.Series of values as long as the length matches :

>>> tsgroup.to_tsd([-1, 1])
Time (s)
0.0   -1.0
1.0   -1.0
2.0    1.0
3.0    1.0
dtype: float64

The reverse operation can be done with the Tsd.to_tsgroup function :

>>> my_tsd
Time (s)
0.0    0.0
1.0    0.0
2.0    5.0
3.0    5.0
dtype: float64
>>> my_tsd.to_tsgroup()
  Index    rate
-------  ------
      0       1
      5       1
Return type:

Tsd

Raises:

RuntimeError – “Index are not equals” : if pandas.Series indexes don’t match the TsGroup indexes “Values is not the same length” : if numpy.ndarray/list object is not the same size as the TsGroup object “Key not in metadata of TsGroup” : if string argument does not match any column names of the metadata, “Unknown argument format” ; if argument is not a string, list, numpy.ndarray or pandas.Series

update([E, ]**F) None.  Update D from mapping/iterable E and F.#

If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

value_from(tsd, ep=None)[source]#

Replace the value of each Ts/Tsd object within the Ts group with the closest value from tsd argument

Parameters:
  • tsd (Tsd) – The Tsd object holding the values to replace

  • ep (IntervalSet) – The IntervalSet object to restrict the operation. If None, the time support of the tsd input object is used.

Returns:

TsGroup object with the new values

Return type:

TsGroup

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> tmp = { 0:nap.Ts(t=np.arange(0,200), time_units='s'),
1:nap.Ts(t=np.arange(0,200,0.5), time_units='s'),
2:nap.Ts(t=np.arange(0,300,0.25), time_units='s'),
}
>>> tsgroup = nap.TsGroup(tmp)
>>> ep = nap.IntervalSet(start=0, end=100, time_units='s')

The variable tsd is a time series object containing the values to assign, for example the tracking data:

>>> tsd = nap.Tsd(t=np.arange(0,100), d=np.random.rand(100), time_units='s')
>>> ep = nap.IntervalSet(start = 0, end = 100, time_units = 's')
>>> newtsgroup = tsgroup.value_from(tsd, ep)
values()[source]#

Return a list of all the Ts/Tsd objects in the TsGroup

Returns:

List of Ts/Tsd objects

Return type:

list