"""
Pynapple time series are containers specialized for neurophysiological time series.
They provides standardized time representation, plus various functions for manipulating times series with identical sampling frequency.
Multiple time series object are avaible depending on the shape of the data.
- `TsdTensor` : for data with of more than 2 dimensions, typically movies.
- `TsdFrame` : for column-based data. It can be easily converted to a pandas.DataFrame. Columns can be labelled and selected similar to pandas.
- `Tsd` : One-dimensional time series. It can be converted to a pandas.Series.
- `Ts` : For timestamps data only.
Most of the same functions are available through all classes. Objects behaves like numpy.ndarray. Slicing can be done the same way for example
`tsd[0:10]` returns the first 10 rows. Similarly, you can call any numpy functions like `np.mean(tsd, 1)`.
"""
import abc
import importlib
import warnings
from numbers import Number
import numpy as np
import pandas as pd
from numpy.lib.mixins import NDArrayOperatorsMixin
from scipy import signal
from tabulate import tabulate
from ._core_functions import _bin_average, _convolve, _dropna, _restrict, _threshold
from .base_class import _Base
from .interval_set import IntervalSet
from .metadata_class import _MetadataMixin, add_meta_docstring
from .time_index import TsIndex
from .utils import (
_concatenate_tsd,
_convert_iter_to_str,
_get_terminal_size,
_split_tsd,
_TsdFrameSliceHelper,
convert_to_array,
is_array_like,
)
def _get_class(data):
"""Select the right time series object and return the class
Parameters
----------
data : numpy.ndarray
The data to hold in the time series object
Returns
-------
Class
The class
"""
if data.ndim == 1:
return Tsd
elif data.ndim == 2:
return TsdFrame
else:
return TsdTensor
def _initialize_tsd_output(
input_object, values, time_index=None, time_support=None, kwargs=None
):
"""
Initialize the output object for time series data, ensuring proper alignment of time indices
and handling metadata when applicable.
Parameters
----------
input_object : Tsd | TsdFrame | TsdTensor
Input object, typically a `Tsd`, `TsdFrame` or `TsdTensor`, used to extract time indices and metadata
if not provided explicitly.
values : array-like
Output data, which can be a NumPy array or an array-like object compatible with `Tsd` or `TsdFrame`.
time_index : array-like, optional
Time indices for the output data. If not provided, the indices are extracted from `input_object`.
time_support : IntervalSet, optional
Time support (epoch) for the output. If not provided, the time support is extracted from `input_object`.
kwargs : dict, optional
Additional keyword arguments for constructing the output object. Supports `columns` and `metadata`
for `TsdFrame` objects.
Returns
-------
object
Initialized TSD object (`Tsd`, `TsdFrame`, or equivalent) with the specified time indices, data,
and metadata, or the original `values` object if it is not array-like.
Notes
-----
- If output is a `TsdFrame` and `input_object` is also a `TsdFrame` with matching shapes, the columns and metadata
are propagated from input to output, unless explicitly provided in `kwargs`.
- If `time_index` and `time_support` are not provided, they are extracted from `input_object`.
Examples
--------
# Example usage with TsdFrame
out = _initialize_tsd_output(input_object=tsd_frame, values=data_array, time_index=time_array, time_support=epoch, kwargs={"columns": cols})
# Example usage with NumPy array
out = _initialize_tsd_output(input_object=tsd_obj, values=numpy_array)
"""
kwargs = kwargs if kwargs is not None else {}
if isinstance(values, np.ndarray) or is_array_like(values):
# if time and ep are passed use them, otherwise strip from inp
time_index = input_object.index if time_index is None else time_index
if time_index.shape[0] == values.shape[0]:
# grab time support
time_support = (
input_object.time_support if time_support is None else time_support
)
cls = _get_class(values)
# if out will be a tsdframe implement kwargs logic
if cls is TsdFrame:
# get eventual setting
cols = kwargs.get("columns", None)
metadata = kwargs.get("metadata", None)
# if input is tsdframe and has the shape grab metadata and cols if
# not already passed in kwargs
if isinstance(input_object, TsdFrame) and (
values.shape[1] == input_object.shape[1]
):
cols = (
cols
if cols is not None
else getattr(input_object, "columns", None)
)
metadata = (
metadata
if metadata is not None
else getattr(input_object, "metadata", None)
)
# update the kwargs
kwargs.update({"columns": cols, "metadata": metadata})
return cls(t=time_index, d=values, time_support=time_support, **kwargs)
return values
class _BaseTsd(_Base, NDArrayOperatorsMixin, abc.ABC):
"""
Abstract base class for time series objects.
Implement most of the shared functions across concrete classes `Tsd`, `TsdFrame`, `TsdTensor`
"""
values: np.ndarray
"""An array of the time series data"""
def __init__(self, t, d, time_units="s", time_support=None, load_array=True):
super().__init__(t, time_units, time_support)
if load_array or isinstance(d, np.ndarray):
self.values = convert_to_array(d, "d")
else:
if not is_array_like(d):
raise TypeError(
"Data should be array-like, i.e. be indexable, iterable and, have attributes "
"`shape`, `ndim` and, `dtype`)."
)
self.values = d
assert len(self.index) == len(
self.values
), "Length of values {} does not match length of index {}".format(
len(self.values), len(self.index)
)
if isinstance(time_support, IntervalSet) and len(self.index):
starts = time_support.start
ends = time_support.end
idx = _restrict(self.index.values, starts, ends)
t = self.index.values[idx]
d = self.values[idx]
self.index = TsIndex(t)
self.values = d
self.rate = self.index.shape[0] / np.sum(
time_support.values[:, 1] - time_support.values[:, 0]
)
self.dtype = self.values.dtype
def _define_instance(self, time_index, time_support, values=None, **kwargs):
"""
Define a new class instance.
Optional parameters for initialization are either passed to the function or are grabbed from self.
"""
return _initialize_tsd_output(
self,
values,
time_index=time_index,
time_support=time_support,
kwargs=kwargs,
)
def __setitem__(self, key, value):
"""setter for time series"""
if isinstance(key, _BaseTsd):
key = key.d
try:
self.values.__setitem__(key, value)
except IndexError:
raise IndexError
def __getattr__(self, name):
"""Allow numpy functions to be attached as attributes of Tsd objects"""
if hasattr(np, name):
np_func = getattr(np, name)
def method(*args, **kwargs):
return np_func(self, *args, **kwargs)
return method
raise AttributeError(
"Time series object does not have the attribute {}".format(name)
)
@property
def d(self):
return self.values
@property
def shape(self):
return self.values.shape
@property
def ndim(self):
return self.values.ndim
@property
def size(self):
return self.values.size
def __array__(self, dtype=None):
return np.asarray(self.values, dtype=dtype)
def __array_ufunc__(self, ufunc, method, *args, **kwargs):
if method == "__call__":
new_args = []
n_object = 0
for a in args:
if isinstance(a, self.__class__):
new_args.append(a.values)
n_object += 1
else:
new_args.append(a)
# Meant to prevent addition of two Tsd for example
if n_object > 1:
return NotImplemented
else:
out = ufunc(*new_args, **kwargs)
return _initialize_tsd_output(self, out)
else:
return NotImplemented
def __array_function__(self, func, types, args, kwargs):
if func in [
np.sort,
np.lexsort,
np.sort_complex,
np.partition,
np.argpartition,
]:
return NotImplemented
if hasattr(np.fft, func.__name__):
return NotImplemented
if func in [np.split, np.array_split, np.dsplit, np.hsplit, np.vsplit]:
return _split_tsd(func, *args, **kwargs)
if func in [np.concatenate, np.vstack, np.hstack, np.dstack]:
return _concatenate_tsd(func, *args, **kwargs)
new_args = []
for a in args:
if isinstance(a, self.__class__):
new_args.append(a.values)
else:
new_args.append(a)
out = func._implementation(*new_args, **kwargs)
return _initialize_tsd_output(self, out)
def as_array(self):
"""
Return the data.
Returns
-------
out: array-like
_
"""
return self.values
def data(self):
"""
Return the data.
Returns
-------
out: array-like
_
"""
return self.values
def to_numpy(self):
"""
Return the data as a numpy.ndarray.
Mostly useful for matplotlib plotting when calling `plot(tsd)`.
"""
return np.asarray(self.values)
def bin_average(self, bin_size, ep=None, time_units="s"):
"""
Bin the data by averaging points within bin_size
bin_size should be seconds unless specified.
If no epochs is passed, the data will be binned based on the time support.
Parameters
----------
bin_size : float
The bin size (default is second)
ep : None or IntervalSet, optional
IntervalSet to restrict the operation
time_units : str, optional
Time units of bin size ('us', 'ms', 's' [default])
Returns
-------
out: Tsd, TsdFrame, TsdTensor
A Tsd object indexed by the center of the bins and holding the averaged data points.
Examples
--------
This example shows how to bin data within bins of 0.1 second.
>>> import pynapple as nap
>>> import numpy as np
>>> tsd = nap.Tsd(t=np.arange(100), d=np.random.rand(100))
>>> bintsd = tsd.bin_average(0.1)
An epoch can be specified:
>>> ep = nap.IntervalSet(start = 10, end = 80, time_units = 's')
>>> bintsd = tsd.bin_average(0.1, ep=ep)
And bintsd automatically inherit ep as time support:
>>> bintsd.time_support
>>> start end
>>> 0 10.0 80.0
"""
if not isinstance(ep, IntervalSet):
ep = self.time_support
bin_size = TsIndex.format_timestamps(np.array([bin_size]), time_units)[0]
time_array = self.index.values
data_array = self.values
starts = ep.start
ends = ep.end
t, d = _bin_average(time_array, data_array, starts, ends, bin_size)
return _initialize_tsd_output(self, d, time_index=t, time_support=ep)
def dropna(self, update_time_support=True):
"""Drop every row containing NaNs. By default, the time support is updated to start and end around the time points that are non NaNs.
To change this behavior, you can set update_time_support=False.
Parameters
----------
update_time_support : bool, optional
Returns
-------
Tsd, TsdFrame or TsdTensor
The time series without the NaNs
"""
if not isinstance(update_time_support, bool):
raise TypeError("Argument update_time_support should be of type bool")
time_array = self.index.values
data_array = self.values
starts = self.time_support.start
ends = self.time_support.end
t, d, starts, ends = _dropna(
time_array, data_array, starts, ends, update_time_support, self.ndim
)
if update_time_support:
if is_array_like(starts) and is_array_like(ends):
ep = IntervalSet(starts, ends)
else:
ep = None
else:
ep = self.time_support
return _initialize_tsd_output(self, d, time_index=t, time_support=ep)
def convolve(self, array, ep=None, trim="both"):
"""Return the discrete linear convolution of the time series with a one dimensional sequence.
A parameter ep can control the epochs for which the convolution will apply. Otherwise the convolution is made over the time support.
This function assume a constant sampling rate of the time series.
The only mode supported is full. The returned object is trimmed to match the size of the original object. The parameter trim controls which side the trimming operates. Default is 'both'.
See the numpy documentation here : https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
Parameters
----------
array : array-like
1-D or 2-D array with kernel(s) to be used for convolution.
First dimension is assumed to be time.
ep : None, optional
The epochs to apply the convolution
trim : str, optional
The side on which to trim the output of the convolution ('left', 'right', 'both' [default])
Returns
-------
Tsd, TsdFrame or TsdTensor
The convolved time series
"""
if not is_array_like(array):
raise IOError(
"Input should be a numpy array (or jax array if pynajax is installed)."
)
if len(array) == 0:
raise IOError("Input array is length 0")
if array.ndim > 2:
raise IOError("Array should be 1 or 2 dimension.")
if trim not in ["both", "left", "right"]:
raise IOError("Unknow argument. trim should be 'both', 'left' or 'right'.")
time_array = self.index.values
data_array = self.values
if ep is None:
ep = self.time_support
starts = ep.start
ends = ep.end
else:
if not isinstance(ep, IntervalSet):
raise IOError("ep should be an object of type IntervalSet")
starts = ep.start
ends = ep.end
idx = _restrict(time_array, starts, ends)
time_array = time_array[idx]
data_array = data_array[idx]
new_data_array = _convolve(time_array, data_array, starts, ends, array, trim)
return _initialize_tsd_output(
self, new_data_array, time_index=time_array, time_support=ep
)
def smooth(self, std, windowsize=None, time_units="s", size_factor=100, norm=True):
"""Smooth a time series with a gaussian kernel.
`std` is the standard deviation of the gaussian kernel in units of time.
If only `std` is passed, the function will compute the standard deviation and size in number
of time points automatically based on the sampling rate of the time series.
For example, if the time series `tsd` has a sample rate of 100 Hz and `std` is 50 ms,
the standard deviation will be converted to an integer through
`tsd.rate * std = int(100 * 0.05) = 5`.
If `windowsize` is None, the function will select a kernel size as 100 times
the std in number of time points. This behavior can be controlled with the
parameter `size_factor`.
`norm` set to True normalizes the gaussian kernel to sum to 1.
In the following example, a time series `tsd` with a sampling rate of 100 Hz
is convolved with a gaussian kernel. The standard deviation is
0.05 second and the windowsize is 2 second. When instantiating the gaussian kernel
from scipy, it corresponds to parameters `M = 200` and `std=5`
>>> tsd.smooth(std=0.05, windowsize=2, time_units='s', norm=False)
This line is equivalent to :
>>> from scipy.signal.windows import gaussian
>>> kernel = gaussian(M = 200, std=5)
>>> tsd.convolve(window)
It is generally a good idea to visualize the kernel before applying any convolution.
See the scipy documentation for the [gaussian window](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.gaussian.html)
Parameters
----------
std : Number
Standard deviation in units of time
windowsize : Number
Size of the gaussian window in units of time.
time_units : str, optional
The time units in which std and windowsize are specified ('us', 'ms', 's' [default]).
size_factor : int, optional
How long should be the kernel size as a function of the standard deviation. Default is 100.
Bypassed if windowsize is used.
norm : bool, optional
Whether to normalized the gaussian kernel or not. Default is `True`.
Returns
-------
Tsd, TsdFrame, TsdTensor
Time series convolved with a gaussian kernel
"""
if not isinstance(std, (int, float)):
raise IOError("std should be type int or float")
if not isinstance(size_factor, int):
raise IOError("size_factor should be of type int")
if not isinstance(norm, bool):
raise IOError("norm should be of type boolean")
if not isinstance(time_units, str):
raise IOError("time_units should be of type str")
std = TsIndex.format_timestamps(np.array([std]), time_units)[0]
std_size = int(self.rate * std)
if windowsize is not None:
if not isinstance(windowsize, Number):
raise IOError("windowsize should be type int or float")
windowsize = TsIndex.format_timestamps(np.array([windowsize]), time_units)[
0
]
M = int(self.rate * windowsize)
else:
M = std_size * size_factor
if M % 2 == 0:
M += 1
window = signal.windows.gaussian(M=M, std=std_size)
if norm:
window = window / window.sum()
return self.convolve(window)
def interpolate(self, ts, ep=None, left=None, right=None):
"""Wrapper of the numpy linear interpolation method. See [numpy interpolate](https://numpy.org/doc/stable/reference/generated/numpy.interp.html)
for an explanation of the parameters.
The argument ts should be Ts, Tsd, TsdFrame, TsdTensor to ensure interpolating from sorted timestamps in the right unit,
Parameters
----------
ts : Ts, Tsd, TsdFrame or TsdTensor
The object holding the timestamps
ep : IntervalSet, optional
The epochs to use to interpolate. If None, the time support of Tsd is used.
left : None, optional
Value to return for ts < tsd[0], default is tsd[0].
right : None, optional
Value to return for ts > tsd[-1], default is tsd[-1].
"""
if not isinstance(ts, _Base):
raise IOError(
"First argument should be an instance of Ts, Tsd, TsdFrame or TsdTensor"
)
if left is not None and not isinstance(left, Number):
raise IOError("Argument left should be of type float or int")
if right is not None and not isinstance(right, Number):
raise IOError("Argument right should be of type float or int")
if ep is None:
ep = self.time_support
else:
if not isinstance(ep, IntervalSet):
raise IOError("ep should be an object of type IntervalSet")
new_t = ts.restrict(ep).index
new_shape = (
len(new_t) if self.values.ndim == 1 else (len(new_t),) + self.shape[1:]
)
new_d = np.full(new_shape, np.nan)
start = 0
for i in range(len(ep)):
t = ts.get(ep[i, 0], ep[i, 1])
tmp = self.get(ep[i, 0], ep[i, 1])
if len(t) and len(tmp):
if self.values.ndim == 1:
new_d[start : start + len(t)] = np.interp(
t.index.values,
tmp.index.values,
tmp.values,
left=left,
right=right,
)
else:
interpolated_values = np.apply_along_axis(
lambda row: np.interp(
t.index.values,
tmp.index.values,
row,
left=left,
right=right,
),
0,
tmp.values,
)
new_d[start : start + len(t), ...] = interpolated_values
start += len(t)
return _initialize_tsd_output(self, new_d, time_index=new_t, time_support=ep)
[docs]
class TsdTensor(_BaseTsd):
"""
Container for neurophysiological time series with more than 2 dimensions (for example movies).
Attributes
----------
rate : float
Frequency of the time series (Hz) computed over the time support
time_support : IntervalSet
The time support of the time series
Examples
--------
Initialize a TsdTensor:
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.arange(10)
>>> d = np.random.randn(10, 2, 3)
>>> tsdtensor = nap.TsdTensor(t=t, d=d)
>>> tsdtensor
Time (s)
---------- -------------------------------
0 [[-1.493178 ... -1.281017] ...]
1 [[0.230829 ... 0.437679] ...]
2 [[-0.462031 ... 0.344506] ...]
3 [[0.497019 ... 0.469494] ...]
4 [[0.065921 ... 1.012917] ...]
5 [[0.158534 ... 1.455523] ...]
6 [[-2.567728 ... 0.61182 ] ...]
7 [[0.940799 ... 0.109203] ...]
8 [[2.340077 ... 0.21885 ] ...]
9 [[-0.306175 ... -0.447414] ...]
dtype: float64, shape: (10, 2, 3)
Initialize a TsdTensor with `time_support`:
>>> t = np.arange(10)
>>> d = np.random.randn(10, 2, 3)
>>> time_support = nap.IntervalSet(start=0, end=4)
>>> tsdtensor = nap.TsdTensor(t=t, d=d, time_support=time_support)
>>> tsdtensor
Time (s)
---------- -------------------------------
0 [[-1.493178 ... -1.281017] ...]
1 [[0.230829 ... 0.437679] ...]
2 [[-0.462031 ... 0.344506] ...]
3 [[0.497019 ... 0.469494] ...]
4 [[0.065921 ... 1.012917] ...]
dtype: float64, shape: (5, 2, 3)
"""
[docs]
def __init__(
self, t, d, time_units="s", time_support=None, load_array=True, **kwargs
):
"""
TsdTensor initializer
Parameters
----------
t : numpy.ndarray
the time index t
d : numpy.ndarray
The data
time_units : str, optional
The time units in which times are specified ('us', 'ms', 's' [default]).
time_support : IntervalSet, optional
The time support of the TsdFrame object
load_array : bool, optional
Whether the data should be converted to a numpy (or jax) array. Useful when passing a memory map object like zarr.
Default is True. Does not apply if `d` is already a numpy array or a numpy memory map.
"""
super().__init__(t, d, time_units, time_support, load_array)
if not self.values.ndim >= 3:
raise RuntimeError(
"Data should have more than 2 dimensions. If ndim < 3, use TsdFrame or Tsd object"
)
self.nap_class = self.__class__.__name__
self._initialized = True
def __repr__(self):
headers = ["Time (s)", ""]
bottom = "dtype: {}".format(self.dtype) + ", shape: {}".format(self.shape)
max_rows = 2
rows = _get_terminal_size()[1]
max_rows = np.maximum(rows - 10, 2)
if len(self):
def create_str(array):
if array.ndim == 1:
if len(array) > 2:
return np.array2string(
np.array([array[0], array[-1]]),
precision=6,
separator=" ... ",
)
else:
return np.array2string(array, precision=6, separator=", ")
else:
return "[" + create_str(array[0]) + " ...]"
_str_ = []
if self.shape[0] > max_rows:
n_rows = max_rows // 2
for i, array in zip(self.index[0:n_rows], self.values[0:n_rows]):
_str_.append([i, create_str(array)])
_str_.append(["...", ""])
for i, array in zip(
self.index[-n_rows:],
self.values[self.values.shape[0] - n_rows : self.values.shape[0]],
):
_str_.append([i, create_str(array)])
else:
for i, array in zip(self.index, self.values):
_str_.append([i, create_str(array)])
return tabulate(_str_, headers=headers, colalign=("left",)) + "\n" + bottom
else:
return tabulate([], headers=headers) + "\n" + bottom
def __getitem__(self, key):
if isinstance(key, Tsd):
if not np.issubdtype(key.dtype, np.bool_):
raise ValueError(
"When indexing with a Tsd, it must contain boolean values"
)
output = self.values[key.values]
index = self.index[key.values]
elif isinstance(key, tuple):
if any(
isinstance(k, Tsd) and not np.issubdtype(k.dtype, np.bool_) for k in key
):
raise ValueError(
"When indexing with a Tsd, it must contain boolean values"
)
key = tuple(k.values if isinstance(k, Tsd) else k for k in key)
output = self.values.__getitem__(key)
index = self.index.__getitem__(key[0])
else:
output = self.values.__getitem__(key)
index = self.index.__getitem__(key)
if isinstance(index, Number):
index = np.array([index])
return _initialize_tsd_output(self, output, time_index=index)
[docs]
def save(self, filename):
"""
Save TsdTensor object in npz format. The file will contain the timestamps, the
data and the time support.
The main purpose of this function is to save small/medium sized time series
objects. For example, you extracted several channels from your recording and
filtered them. You can save the filtered channels as a npz to avoid
reprocessing it.
You can load the object with `nap.load_file`. Keys are 't', 'd', 'start', 'end', 'type'
and 'columns' for columns names.
Parameters
----------
filename : str
The filename
Examples
--------
>>> import pynapple as nap
>>> import numpy as np
>>> tsdtensor = nap.TsdTensor(t=np.array([0., 1.]), d = np.zeros((2,3,4)))
>>> tsdtensor.save("my_path/my_tsdtensor.npz")
To load you file, you can use the `nap.load_file` function :
>>> tsdtensor = nap.load_file("my_path/my_tsdtensor.npz")
Raises
------
RuntimeError
If filename is not str, path does not exist or filename is a directory.
"""
filename = self._get_filename(filename)
np.savez(
filename,
t=self.index.values,
d=self.values,
start=self.time_support.start,
end=self.time_support.end,
type=np.array([self.nap_class], dtype=np.str_),
)
return
[docs]
class TsdFrame(_BaseTsd, _MetadataMixin):
"""
Column-based container for neurophysiological time series.
A pandas.DataFrame can be passed directly.
Parameters
----------
t : numpy.ndarray or pandas.DataFrame
the time index t, or a pandas.DataFrame (if d is None)
d : numpy.ndarray
The data
time_units : str, optional
The time units in which times are specified ('us', 'ms', 's' [default]).
time_support : IntervalSet, optional
The time support of the TsdFrame object
columns : iterables
Column names
load_array : bool, optional
Whether the data should be converted to a numpy (or jax) array. Useful when passing a memory map object like zarr.
Default is True. Does not apply if `d` is already a numpy array or a numpy memory map.
metadata: pd.DataFrame or dict, optional
Metadata associated with data columns. Metadata names are pulled from DataFrame columns or dictionary keys.
The length of the metadata should match the number of data columns.
If a DataFrame is passed, the index should match the columns of the TsdFrame.
Examples
--------
Initialize a TsdFrame:
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.arange(100)
>>> d = np.ones((100, 3))
>>> tsdframe = nap.TsdFrame(t=t, d=d)
>>> tsdframe
Time (s) 0 1 2
---------- --- --- ---
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
... ... ... ...
95.0 1.0 1.0 1.0
96.0 1.0 1.0 1.0
97.0 1.0 1.0 1.0
98.0 1.0 1.0 1.0
99.0 1.0 1.0 1.0
dtype: float64, shape: (100, 3)
Initialize a TsdFrame with column names:
>>> tsdframe = nap.TsdFrame(t=t, d=d, columns=['A', 'B', 'C'])
>>> tsdframe
Time (s) A B C
---------- --- --- ---
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
... ... ... ...
95.0 1.0 1.0 1.0
96.0 1.0 1.0 1.0
97.0 1.0 1.0 1.0
98.0 1.0 1.0 1.0
99.0 1.0 1.0 1.0
dtype: float64, shape: (100, 3)
Initialize a TsdFrame with metadata:
>>> metadata = {"color": ["red", "blue", "green"], "depth": [1, 2, 3]}
>>> tsdframe = nap.TsdFrame(t=t, d=d, columns=["A", "B", "C"], metadata=metadata)
>>> tsdframe
Time (s) A B C
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
... ... ... ...
95.0 1.0 1.0 1.0
96.0 1.0 1.0 1.0
97.0 1.0 1.0 1.0
98.0 1.0 1.0 1.0
99.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
color red blue green
depth 1 2 3
<BLANKLINE>
dtype: float64, shape: (100, 3)
Initialize a TsdFrame with a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame(index=t, columns=["A", "B", "C"], data=d)
>>> metadata = pd.DataFrame(
... index=["A", "B", "C"],
... columns=["color", "depth"],
... data=[["red", 1], ["blue", 2], ["green", 3]],
... )
>>> tsdframe = nap.TsdFrame(data, metadata=metadata)
>>> tsdframe
Time (s) A B C
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
... ... ... ...
95.0 1.0 1.0 1.0
96.0 1.0 1.0 1.0
97.0 1.0 1.0 1.0
98.0 1.0 1.0 1.0
99.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
color red blue green
depth 1 2 3
<BLANKLINE>
dtype: float64, shape: (100, 3)
"""
columns: pd.Index
"""Data column names of the TsdFrame"""
[docs]
def __init__(
self,
t,
d=None,
time_units="s",
time_support=None,
columns=None,
load_array=True,
metadata=None,
):
c = columns
if isinstance(t, pd.DataFrame):
d = t.values
c = t.columns.values
t = t.index.values
else:
assert d is not None, "Missing argument d when initializing TsdFrame"
super().__init__(t, d, time_units, time_support, load_array)
assert self.values.ndim <= 2, "Data should be 1 or 2 dimensional."
if self.values.ndim == 1:
self.values = np.expand_dims(self.values, 1)
if c is None or len(c) != self.values.shape[1]:
c = np.arange(self.values.shape[1], dtype="int")
else:
assert (
len(c) == self.values.shape[1]
), "Number of columns should match the second dimension of d"
self.columns = pd.Index(c)
self.nap_class = self.__class__.__name__
# initialize metadata for class attributes
_MetadataMixin.__init__(self)
# get current list of attributes
self._class_attributes = self.__dir__()
self._class_attributes.append("_class_attributes")
# set metadata
self._initialized = True
self.set_info(metadata)
@property
def loc(self):
# add deprecation warning
# warnings.warn(
# "'loc' will be deprecated in a future version. Use bracket indexing instead.",
# DeprecationWarning,
# )
return _TsdFrameSliceHelper(self)
def __repr__(self):
# Start by determining how many columns and rows.
# This can be unique for each object
cols, rows = _get_terminal_size()
max_cols = np.maximum(cols // 100, 5)
max_rows = np.maximum(rows - 10, 2)
# Computing headers and bottom
headers = ["Time (s)"] + [str(k) for k in self.columns]
bottom = f"dtype: {self.dtype}, shape: {self.shape}"
if self.shape[1] > max_cols:
headers = headers[0 : max_cols + 1] + ["..."]
with warnings.catch_warnings():
warnings.simplefilter("ignore")
if len(self):
end = ["..."] if self.shape[1] > max_cols else []
if len(self) > max_rows:
n_rows = max_rows // 2
ends = np.array([end] * n_rows)
table = np.vstack(
(
np.hstack(
(
self.index[0:n_rows, None],
np.round(self.values[0:n_rows, 0:max_cols], 5),
ends,
),
dtype=object,
),
np.array(
[
["..."]
+ ["..."] * np.minimum(max_cols, self.shape[1])
+ end
],
dtype=object,
),
np.hstack(
(
self.index[-n_rows:, None],
np.round(self.values[-n_rows:, 0:max_cols], 5),
ends,
),
dtype=object,
),
)
)
else:
ends = np.array([end] * len(self))
table = np.hstack(
(
self.index[:, None],
np.round(self.values[:, 0:max_cols], 5),
ends,
),
dtype=object,
)
else:
table = []
# Adding metadata if any.
col_names = self._metadata.columns.values
if len(col_names):
ends = np.array([end] * self._metadata.shape[1])
table = np.vstack(
(
table,
np.array([["Metadata"] + [" "] * (table.shape[1] - 1)]),
[["--------"] * table.shape[1]],
np.hstack(
(
col_names[:, None],
_convert_iter_to_str(
self._metadata.values[0:max_cols].T
),
ends,
),
dtype=object,
),
np.array([[" "] * table.shape[1]]),
),
dtype=object,
)
return tabulate(table, headers=headers, colalign=("left",)) + "\n" + bottom
def __setattr__(self, name, value):
# necessary setter to allow metadata to be set as an attribute
if self._initialized:
if name in self._class_attributes:
raise AttributeError(
f"Cannot set attribute: '{name}' is a reserved attribute. Use 'set_info()' to set '{name}' as metadata."
)
else:
_MetadataMixin.__setattr__(self, name, value)
else:
super().__setattr__(name, value)
def __getattr__(self, name):
# TsdFrame needs a custom __getattr__ to override default inherited from BaseTsd
# avoid infinite recursion when pickling due to
# self._metadata.column having attributes '__reduce__', '__reduce_ex__'
if name in ("__getstate__", "__setstate__", "__reduce__", "__reduce_ex__"):
raise AttributeError(name)
try:
metadata = self._metadata
except (AttributeError, RecursionError):
metadata = pd.DataFrame(index=self.columns)
if name == "_metadata":
return metadata
elif name in metadata.columns:
return _MetadataMixin.__getattr__(self, name)
else:
return super().__getattr__(name)
def __setitem__(self, key, value):
if isinstance(key, Tsd):
try:
assert np.issubdtype(key.dtype, np.bool_)
except AssertionError:
raise ValueError(
"When indexing with a Tsd, it must contain boolean values"
)
key = key.d
try:
if isinstance(key, str):
if key in self.columns:
new_key = self.columns.get_indexer([key])
self.values.__setitem__(
(slice(None, None, None), new_key[0]), value
)
else:
_MetadataMixin.__setitem__(self, key, value)
elif hasattr(key, "__iter__") and all([isinstance(k, str) for k in key]):
new_key = self.columns.get_indexer(key)
self.values.__setitem__((slice(None, None, None), new_key), value)
else:
self.values.__setitem__(key, value)
except IndexError:
raise IndexError
def __getitem__(self, key, *args, **kwargs):
if isinstance(key, Tsd):
try:
assert np.issubdtype(key.dtype, np.bool_)
except AssertionError:
raise ValueError(
"When indexing with a Tsd, it must contain boolean values"
)
key = key.d
elif isinstance(key, str):
if key in self.columns:
with warnings.catch_warnings():
# ignore deprecated warning for loc
warnings.simplefilter("ignore")
return self.loc[key]
else:
return _MetadataMixin.__getitem__(self, key)
elif hasattr(key, "__iter__") and all([isinstance(k, str) for k in key]):
if all(k in self.columns for k in key):
with warnings.catch_warnings():
# ignore deprecated warning for loc
warnings.simplefilter("ignore")
return self.loc[key]
else:
return _MetadataMixin.__getitem__(self, key)
else:
if isinstance(key, pd.Series) and key.index.equals(self.columns):
# if indexing with a pd.Series from metadata, transform it to tuple with slice(None) in first position
key = (slice(None, None, None), key)
output = self.values.__getitem__(key)
columns = self.columns
if isinstance(key, tuple):
index = self.index.__getitem__(key[0])
if len(key) == 2:
columns = self.columns.__getitem__(key[1])
else:
index = self.index.__getitem__(key)
# if isinstance(index, Number):
# index = np.array([index])
if all(is_array_like(a) for a in [index, output]):
if isinstance(key, tuple):
if (
len(index) == 1
and output.ndim == 1
and not isinstance(key[1], int)
):
output = output[None, :]
elif (
(output.ndim == 1)
and isinstance(key[1], (list, np.ndarray))
and (len(columns) == 1)
):
# reshape output of single column if column key is a list or array
output = output[:, None]
# if getting a row (1 dim implied)
elif isinstance(key, Number):
output = output[None, :]
kwargs["columns"] = columns
kwargs["metadata"] = self._metadata.loc[columns]
return _initialize_tsd_output(
self, output, time_index=index, kwargs=kwargs
)
else:
return output
[docs]
def as_dataframe(self):
"""
Convert the TsdFrame object to a pandas.DataFrame object.
Returns
-------
out: pandas.DataFrame
_
"""
return pd.DataFrame(
index=self.index.values, data=self.values, columns=self.columns
)
[docs]
def as_units(self, units="s"):
"""
Returns a DataFrame with time expressed in the desired unit.
Parameters
----------
units : str, optional
('us', 'ms', 's' [default])
Returns
-------
pandas.DataFrame
the series object with adjusted times
"""
t = self.index.in_units(units)
if units == "us":
t = t.astype(np.int64)
df = pd.DataFrame(index=t, data=self.values)
df.index.name = "Time (" + str(units) + ")"
df.columns = self.columns.copy()
return df
[docs]
def save(self, filename):
"""
Save TsdFrame object in npz format. The file will contain the timestamps, the
data and the time support.
The main purpose of this function is to save small/medium sized time series
objects. For example, you extracted several channels from your recording and
filtered them. You can save the filtered channels as a npz to avoid
reprocessing it.
You can load the object with `nap.load_file`. Keys are 't', 'd', 'start', 'end', 'type'
and 'columns' for columns names.
Parameters
----------
filename : str
The filename
Examples
--------
>>> import pynapple as nap
>>> import numpy as np
>>> tsdframe = nap.TsdFrame(t=np.array([0., 1.]), d = np.array([[2, 3],[4,5]]), columns=['a', 'b'])
>>> tsdframe.save("my_path/my_tsdframe.npz")
To load you file, you can use the `nap.load_file` function :
>>> tsdframe = nap.load_file("my_path/my_tsdframe.npz")
>>> tsdframe
a b
Time (s)
0.0 2 3
1.0 4 5
Raises
------
RuntimeError
If filename is not str, path does not exist or filename is a directory.
"""
filename = self._get_filename(filename)
cols_name = self.columns
if cols_name.dtype == np.dtype("O"):
cols_name = cols_name.astype(str)
np.savez(
filename,
t=self.index.values,
d=self.values[:],
start=self.time_support.start,
end=self.time_support.end,
columns=cols_name,
type=np.array(["TsdFrame"], dtype=np.str_),
_metadata=self._metadata.to_dict(), # save metadata as dictionary
)
return
[docs]
@add_meta_docstring("set_info")
def set_info(self, metadata=None, **kwargs):
"""
Examples
--------
>>> import pynapple as nap
>>> import numpy as np
>>> tsdframe = nap.TsdFrame(t=np.arange(5), d=np.ones((5, 3)), columns=["a", "b", "c"])
To add metadata with a pandas.DataFrame:
>>> import pandas as pd
>>> metadata = pd.DataFrame(index=tsdframe.columns, data=["red", "blue", "green"], columns=["color"])
>>> tsdframe.set_info(metadata)
>>> tsdframe
Time (s) a b c
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
color red blue green
<BLANKLINE>
dtype: float64, shape: (5, 3)
To add metadata with a dictionary:
>>> metadata = {"xpos": [10, 20, 30]}
>>> tsdframe.set_info(metadata)
>>> tsdframe
Time (s) a b c
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
color red blue green
xpos 10 20 30
<BLANKLINE>
dtype: float64, shape: (5, 3)
To add metadata with a keyword arument (pd.Series, numpy.ndarray, list or tuple):
>>> ypos = pd.Series(index=tsdframe.columns, data = [10, 10, 10])
>>> tsdframe.set_info(ypos=ypos)
>>> tsdframe
Time (s) a b c
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
color red blue green
xpos 10 20 30
ypos 10 10 10
<BLANKLINE>
dtype: float64, shape: (5, 3)
To add metadata as an attribute:
>>> tsdframe.label = ["a", "b", "c"]
>>> tsdframe
Time (s) a b c
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
color red blue green
xpos 10 20 30
ypos 10 10 10
label a b c
<BLANKLINE>
dtype: float64, shape: (5, 3)
To add metadata as a key:
>>> tsdframe["region"] = ["M1", "M1", "M2"]
>>> tsdframe
Time (s) a b c
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
color red blue green
xpos 10 20 30
ypos 10 10 10
label a b c
region M1 M1 M2
<BLANKLINE>
dtype: float64, shape: (5, 3)
Metadata can be overwritten:
>>> tsdframe.set_info(label=["x", "y", "z"])
>>> tsdframe
Time (s) a b c
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
color red blue green
xpos 10 20 30
ypos 10 10 10
label x y z
region M1 M1 M2
<BLANKLINE>
dtype: float64, shape: (5, 3)
"""
_MetadataMixin.set_info(self, metadata, **kwargs)
[docs]
@add_meta_docstring("get_info")
def get_info(self, key):
"""
Examples
--------
>>> import pynapple as nap
>>> import numpy as np
>>> metadata = {"l1": [1, 2, 3], "l2": ["x", "x", "y"]}
>>> tsdframe = nap.TsdFrame(t=np.arange(5), d=np.ones((5, 3)), metadata=metadata)
>>> print(tsdframe)
Time (s) 0 1 2
---------- -------- -------- --------
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
2.0 1.0 1.0 1.0
3.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
Metadata
-------- -------- -------- --------
l1 1 2 3
l2 x x y
dtype: float64, shape: (5, 3)
To access a single metadata column:
>>> tsdframe.get_info("l1")
0 1
1 2
2 3
Name: l1, dtype: int64
To access multiple metadata columns:
>>> tsdframe.get_info(["l1", "l2"])
l1 l2
0 1 x
1 2 x
2 3 y
To access metadata of a single column:
>>> tsdframe.get_info(0)
rate 0.667223
l1 1
l2 x
Name: 0, dtype: object
To access metadata of multiple columns:
>>> tsdframe.get_info([0, 1])
rate l1 l2
0 0.667223 1 x
1 1.334445 2 x
To access metadata of a single column and metadata key:
>>> tsdframe.get_info((0, "l1"))
np.int64(1)
To access metadata as an attribute:
>>> tsdframe.l1
0 1
1 2
2 3
Name: l1, dtype: int64
To access metadata as a key:
>>> tsdframe["l1"]
0 1
1 2
2 3
Name: l1, dtype: int64
Multiple metadata columns can be accessed as keys:
>>> tsdframe[["l1", "l2"]]
l1 l2
0 1 x
1 2 x
2 3 y
"""
return _MetadataMixin.get_info(self, key)
[docs]
class Tsd(_BaseTsd):
"""
1-dimensional container for neurophysiological time series.
Tsd provides standardized time representation, plus various functions for manipulating times series.
Attributes
----------
rate : float
Frequency of the time series (Hz) computed over the time support
time_support : IntervalSet
The time support of the time series
Examples
--------
Initialize a Tsd:
>>> import pynapple as nap
>>> import numpy as np
>>> t = np.arange(100)
>>> d = np.ones(100)
>>> tsd = nap.Tsd(t=t, d=d)
>>> tsd
Time (s)
---------- --
0.0 1
1.0 1
2.0 1
3.0 1
4.0 1
5.0 1
6.0 1
...
93.0 1
94.0 1
95.0 1
96.0 1
97.0 1
98.0 1
99.0 1
dtype: float64, shape: (100,)
Initialize a Tsd with `time_support`:
>>> t = np.arange(100)
>>> d = np.ones(100)
>>> time_support = nap.IntervalSet(start=0.5, end=8)
>>> tsd = nap.Tsd(t=t, d=d, time_support=time_support)
>>> tsd
Time (s)
---------- --
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
dtype: float64, shape: (8,)
"""
[docs]
def __init__(
self, t, d=None, time_units="s", time_support=None, load_array=True, **kwargs
):
"""
Tsd Initializer.
Parameters
----------
t : numpy.ndarray or pandas.Series
An object transformable in a time series, or a pandas.Series equivalent (if d is None)
d : numpy.ndarray, optional
The data of the time series
time_units : str, optional
The time units in which times are specified ('us', 'ms', 's' [default])
time_support : IntervalSet, optional
The time support of the tsd object
load_array : bool, optional
Whether the data should be converted to a numpy (or jax) array. Useful when passing a memory map object like zarr.
Default is True. Does not apply if `d` is already a numpy array or a numpy memory map.
"""
if isinstance(t, pd.Series):
d = t.values
t = t.index.values
else:
assert d is not None, "Missing argument d when initializing Tsd"
super().__init__(t, d, time_units, time_support, load_array)
assert self.values.ndim == 1, "Data should be 1 dimensional"
self.nap_class = self.__class__.__name__
self._initialized = True
def __repr__(self):
headers = ["Time (s)", ""]
bottom = "dtype: {}".format(self.dtype) + ", shape: {}".format(self.shape)
max_rows = 2
rows = _get_terminal_size()[1]
max_rows = np.maximum(rows - 10, 2)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
if len(self):
if len(self) > max_rows:
n_rows = max_rows // 2
table = []
for i, v in zip(self.index[0:n_rows], self.values[0:n_rows]):
table.append([i, v])
table.append(["..."])
for i, v in zip(
self.index[-n_rows:],
self.values[
self.values.shape[0] - n_rows : self.values.shape[0]
],
):
table.append([i, v])
return (
tabulate(table, headers=headers, colalign=("left",))
+ "\n"
+ bottom
)
else:
return (
tabulate(
np.vstack((self.index, self.values)).T,
headers=headers,
colalign=("left",),
)
+ "\n"
+ bottom
)
else:
return tabulate([], headers=headers) + "\n" + bottom
def __setitem__(self, key, value):
if isinstance(key, Tsd):
try:
assert np.issubdtype(key.dtype, np.bool_)
except AssertionError:
raise ValueError(
"When indexing with a Tsd, it must contain boolean values"
)
key = key.d
try:
if isinstance(key, str):
new_key = self.columns.get_indexer([key])
self.values.__setitem__((slice(None, None, None), new_key[0]), value)
elif hasattr(key, "__iter__") and all([isinstance(k, str) for k in key]):
new_key = self.columns.get_indexer(key)
self.values.__setitem__((slice(None, None, None), new_key), value)
else:
self.values.__setitem__(key, value)
except IndexError:
raise IndexError
def __getitem__(self, key, *args, **kwargs):
if isinstance(key, Tsd):
try:
assert np.issubdtype(key.dtype, np.bool_)
except AssertionError:
raise ValueError(
"When indexing with a Tsd, it must contain boolean values"
)
key = key.d
output = self.values.__getitem__(key)
if isinstance(key, tuple):
index = self.index.__getitem__(key[0])
elif isinstance(key, Number):
index = np.array([key])
else:
index = self.index.__getitem__(key)
return _initialize_tsd_output(self, output, time_index=index, kwargs=kwargs)
[docs]
def as_series(self):
"""
Convert the Ts/Tsd object to a pandas.Series object.
Returns
-------
out: pandas.Series
_
"""
return pd.Series(
index=self.index.values, data=self.values, copy=True, dtype="float64"
)
[docs]
def as_units(self, units="s"):
"""
Returns a pandas Series with time expressed in the desired unit.
Parameters
----------
units : str, optional
('us', 'ms', 's' [default])
Returns
-------
pandas.Series
the series object with adjusted times
"""
ss = self.as_series()
t = self.index.in_units(units)
if units == "us":
t = t.astype(np.int64)
ss.index = t
ss.index.name = "Time (" + str(units) + ")"
return ss
[docs]
def threshold(self, thr, method="above"):
"""
Apply a threshold function to the tsd to return a new tsd
with the time support being the epochs above/below/>=/<= the threshold
Parameters
----------
thr : float
The threshold value
method : str, optional
The threshold method ("above"[default], "below", "aboveequal", "belowequal")
Returns
-------
out: Tsd
All the time points below/ above/greater than equal to/less than equal to the threshold
Raises
------
ValueError
Raise an error if method is unknown.
RuntimeError
Raise an error if thr is too high/low and no epochs is found.
Examples
--------
This example finds all epoch above 0.5 within the tsd object.
>>> import pynapple as nap
>>> tsd = nap.Tsd(t=np.arange(100), d=np.random.rand(100))
>>> newtsd = tsd.threshold(0.5)
The epochs with the times above/below the threshold can be accessed through the time support:
>>> tsd = nap.Tsd(t=np.arange(100), d=np.arange(100), time_units='s')
>>> tsd.threshold(50).time_support
>>> start end
>>> 0 50.5 99.0
"""
if method not in ["above", "below", "aboveequal", "belowequal"]:
raise ValueError(
"Method {} for thresholding is not accepted.".format(method)
)
time_array = self.index.values
data_array = self.values
starts = self.time_support.start
ends = self.time_support.end
t, d, ns, ne = _threshold(time_array, data_array, starts, ends, thr, method)
time_support = IntervalSet(start=ns, end=ne)
return Tsd(t=t, d=d, time_support=time_support)
[docs]
def to_tsgroup(self):
"""
Convert Tsd to a TsGroup by grouping timestamps with the same values.
By default, the values are converted to integers.
Examples
--------
>>> import pynapple as nap
>>> import numpy as np
>>> tsd = nap.Tsd(t = np.array([0, 1, 2, 3]), d = np.array([0, 2, 0, 1]))
Time (s)
0.0 0
1.0 2
2.0 0
3.0 1
dtype: int64
>>> tsd.to_tsgroup()
Index rate
------- ------
0 0.67
1 0.33
2 0.33
The reverse operation can be done with the TsGroup.to_tsd function :
>>> tsgroup.to_tsd()
Time (s)
0.0 0.0
1.0 2.0
2.0 0.0
3.0 1.0
dtype: float64
Returns
-------
TsGroup
Grouped timestamps
"""
ts_group = importlib.import_module(".ts_group", "pynapple.core")
t = self.index.values
d = self.values.astype("int")
idx = np.unique(d)
group = {}
for k in idx:
group[k] = Ts(t=t[d == k], time_support=self.time_support)
return ts_group.TsGroup(
group, time_support=self.time_support, bypass_check=True
)
[docs]
def save(self, filename):
"""
Save Tsd object in npz format. The file will contain the timestamps, the
data and the time support.
The main purpose of this function is to save small/medium sized time series
objects. For example, you extracted one channel from your recording and
filtered it. You can save the filtered channel as a npz to avoid
reprocessing it.
You can load the object with `nap.load_file`. Keys are 't', 'd', 'start', 'end' and 'type'.
See the example below.
Parameters
----------
filename : str
The filename
Examples
--------
>>> import pynapple as nap
>>> import numpy as np
>>> tsd = nap.Tsd(t=np.array([0., 1.]), d = np.array([2, 3]))
>>> tsd.save("my_path/my_tsd.npz")
To load you file, you can use the `nap.load_file` function :
>>> tsd = nap.load_file("my_path/my_tsd.npz")
>>> tsd
Time (s)
0.0 2
1.0 3
dtype: int64
Raises
------
RuntimeError
If filename is not str, path does not exist or filename is a directory.
"""
filename = self._get_filename(filename)
np.savez(
filename,
t=self.index.values,
d=self.values,
start=self.time_support.start,
end=self.time_support.end,
type=np.array([self.nap_class], dtype=np.str_),
)
return
[docs]
class Ts(_Base):
"""
Timestamps only object for a time series with only time index.
Attributes
----------
rate : float
Frequency of the time series (Hz) computed over the time support
time_support : IntervalSet
The time support of the time series
"""
[docs]
def __init__(self, t, time_units="s", time_support=None):
"""
Ts Initializer
Parameters
----------
t : numpy.ndarray or pandas.Series
An object transformable in timestamps, or a pandas.Series equivalent (if d is None)
time_units : str, optional
The time units in which times are specified ('us', 'ms', 's' [default])
time_support : IntervalSet, optional
The time support of the Ts object
"""
super().__init__(t, time_units, time_support)
if isinstance(time_support, IntervalSet) and len(self.index):
starts = time_support.start
ends = time_support.end
idx = _restrict(self.index.values, starts, ends)
self.index = TsIndex(self.index.values[idx])
self.rate = self.index.shape[0] / np.sum(
time_support.values[:, 1] - time_support.values[:, 0]
)
self.nap_class = self.__class__.__name__
self._initialized = True
def _define_instance(self, time_index, time_support, values=None, **kwargs):
"""
Define a new class instance.
Optional parameters for initialization are either passed to the function or are grabbed from self.
"""
if values is None:
return self.__class__(t=time_index, time_support=time_support)
else:
return _initialize_tsd_output(
self,
values,
time_index=time_index,
time_support=time_support,
kwargs=kwargs,
)
def __repr__(self):
upper = "Time (s)"
rows = _get_terminal_size()[1]
max_rows = np.maximum(rows - 10, 2)
if len(self) > max_rows:
n_rows = max_rows // 2
_str_ = "\n".join(
[str(i) for i in self.index[0:n_rows]]
+ ["..."]
+ [str(i) for i in self.index[-n_rows:]]
)
else:
_str_ = "\n".join([str(i) for i in self.index])
bottom = "shape: {}".format(len(self.index))
return "\n".join((upper, _str_, bottom))
def __getitem__(self, key):
if isinstance(key, tuple):
index = self.index.__getitem__(key[0])
else:
index = self.index.__getitem__(key)
if isinstance(index, Number):
index = np.array([index])
return Ts(t=index, time_support=self.time_support)
[docs]
def as_series(self):
"""
Convert the Ts/Tsd object to a pandas.Series object.
Returns
-------
out: pandas.Series
_
"""
return pd.Series(index=self.index.values, dtype="object")
[docs]
def as_units(self, units="s"):
"""
Returns a pandas Series with time expressed in the desired unit.
Parameters
----------
units : str, optional
('us', 'ms', 's' [default])
Returns
-------
pandas.Series
the series object with adjusted times
"""
t = self.index.in_units(units)
if units == "us":
t = t.astype(np.int64)
ss = pd.Series(index=t, dtype="object")
ss.index.name = "Time (" + str(units) + ")"
return ss
[docs]
def fillna(self, value):
"""
Similar to pandas fillna function.
Parameters
----------
value : Number
Value for filling
Returns
-------
Tsd
"""
assert isinstance(value, Number), "Only a scalar can be passed to fillna"
d = np.empty(len(self))
d.fill(value)
return Tsd(t=self.index, d=d, time_support=self.time_support)
[docs]
def save(self, filename):
"""
Save Ts object in npz format. The file will contain the timestamps and
the time support.
The main purpose of this function is to save small/medium sized timestamps
object.
You can load the object with `nap.load_file`. Keys are 't', 'start' and 'end' and 'type'.
See the example below.
Parameters
----------
filename : str
The filename
Examples
--------
>>> import pynapple as nap
>>> import numpy as np
>>> ts = nap.Ts(t=np.array([0., 1., 1.5]))
>>> ts.save("my_path/my_ts.npz")
To load you file, you can use the `nap.load_file` function :
>>> ts = nap.load_file("my_path/my_ts.npz")
>>> ts
Time (s)
0.0
1.0
1.5
Raises
------
RuntimeError
If filename is not str, path does not exist or filename is a directory.
"""
filename = self._get_filename(filename)
np.savez(
filename,
t=self.index.values,
start=self.time_support.start,
end=self.time_support.end,
type=np.array(["Ts"], dtype=np.str_),
)
return