pynapple.TsdFrame.groupby_apply#
- TsdFrame.groupby_apply(by, func, input_key=None, **func_kwargs)[source]#
Apply a function to each group in a grouped pynapple object.
- Parameters:
by (str or list of str) – Metadata name(s) to group by.
func (function) – Function to apply to each group.
input_key (str or None, optional) – Input key that the grouped object will be passed as. If None, the grouped object will be passed as the first positional argument.
**func_kwargs (optional) – Additional keyword arguments to pass to the function. Any required positional arguments that are not the grouped object should be passed as keyword arguments.
- Returns:
Dictionary of results from applying the function to each group, where the keys are the group names and the values are the results.
- Return type:
dict
Examples
>>> import pynapple as nap >>> import numpy as np >>> metadata = {"l1": [1, 2, 2], "l2": ["x", "x", "y"]} >>> tsdframe = nap.TsdFrame(t=np.arange(5), d=np.ones((5, 3)), metadata=metadata) >>> print(tsdframe) Time (s) 0 1 2 ---------- -------- -------- -------- 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0 4.0 1.0 1.0 1.0 Metadata -------- -------- -------- -------- l1 1 2 2 l2 x x y dtype: float64, shape: (5, 3)
Apply a numpy function:
>>> tsdframe.groupby_apply("l1", np.sum) {1: 5.0, 2: 10.0}
Apply a custom function:
>>> tsdframe.groupby_apply("l1", lambda x: x.shape) {1: (5, 1), 2: (5, 2)}
Apply a function with additional arguments:
>>> tsdframe.groupby_apply("l1", np.sum, axis=0) {1: array([5.]), 2: array([5., 5.])}