pynapple.TsGroup.trial_count#

TsGroup.trial_count(ep, bin_size, align='start', padding_value=nan, time_unit='s')[source]#

Return trial-based count tensor from an IntervalSet object. The shape of the tensor array is (number of group elements, number of trials, number of time bins).

The bin_size parameter determines the number of time bins.

The align parameter controls how the time series are aligned. If align=”start”, the time series are aligned to the start of each trial. If align=”end”, the time series are aligned to the end of each trial.

If trials have uneven durations, the returned array is padded. The parameter padding_value determine which value is used to pad the array. Default is NaN.

Parameters:
  • ep (IntervalSet) – Epochs holding the trials. Each interval can be of unequal size.

  • bin_size (Number) – The size of the time bins.

  • align (str, optional) – How to align the time series (‘start’ [default], ‘end’)

  • padding_value (Number, optional) – How to pad the array if unequal intervals. Default is np.nan.

  • time_unit (str, optional) – Time units of the bin_size parameter (‘s’ [default], ‘ms’, ‘us’).

Return type:

numpy.ndarray

Raises:

RuntimeError – If time_unit not in [“s”, “ms”, “us”]

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> group = nap.TsGroup({0:nap.Ts(t=np.arange(0, 100))})
>>> ep = nap.IntervalSet(start=np.arange(20, 100, 20), end=np.arange(20, 100, 20) + np.arange(2, 10, 2))
>>> print(ep)
  index    start    end
      0       20     22
      1       40     44
      2       60     66
      3       80     88
shape: (4, 2), time unit: sec.

Create a trial-based tensor by counting events within 1 second bin for each interval of ep.

>>> tensor = group.trial_count(ep, bin_size=1)
>>> tensor
array([[[ 1.,  1., nan, nan, nan, nan, nan, nan],
        [ 1.,  1.,  1.,  1., nan, nan, nan, nan],
        [ 1.,  1.,  1.,  1.,  1.,  1., nan, nan],
        [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]]])

By default, the time series are aligned to the start of the epochs. The parameter align control this behavior.

>>> tensor = group.trial_count(ep, bin_size=1, align="end")
>>> tensor
array([[[nan, nan, nan, nan, nan, nan,  1.,  1.],
        [nan, nan, nan, nan,  1.,  1.,  1.,  1.],
        [nan, nan,  1.,  1.,  1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]]])