pynapple.TsdTensor.restrict#

TsdTensor.restrict(iset)[source]#

Restricts a time series object to a set of time intervals delimited by an IntervalSet object

Parameters:

iset (IntervalSet) – the IntervalSet object

Returns:

Tsd object restricted to ep

Return type:

Ts, Tsd, TsdFrame or TsdTensor

Examples

>>> import pynapple as nap
>>> import numpy as np; np.random.seed(42)
>>> t = np.unique(np.sort(np.random.randint(0, 1000, 100)))
>>> tsdtensor_before = nap.TsdTensor(t=t, d=np.random.randn(len(t), 4, 4), time_units='s')
>>> tsdtensor_before
Time (s)
----------  -------------------------------
1.0         [[-2.178334 ...  0.324199] ...]
13.0        [[-1.875677 ... -0.906721] ...]
20.0        [[0.326845 ... 0.736122] ...]
21.0        [[1.62292 ... 0.89663] ...]
34.0        [[-0.870305 ...  2.943663] ...]
58.0        [[-0.441766 ... -1.426479] ...]
...
897.0       [[ 0.962199 ... -0.370506] ...]
931.0       [[-0.511451 ...  0.5125  ] ...]
942.0       [[-0.828463 ...  0.300192] ...]
955.0       [[-1.193155 ...  0.247027] ...]
957.0       [[1.638941 ... 0.236425] ...]
975.0       [[ 0.393912 ... -1.180782] ...]
dtype: float64, shape: (94, 4, 4)

tsdtensor_before is a timestamp tensor with data.

>>> ep = nap.IntervalSet(start = 0, end = 500, time_units = 's')
>>> ep
  index    start    end
      0        0    500
shape: (1, 2), time unit: sec.

ep is an IntervalSet object defining the epochs.

>>> tsdtensor_after = tsdtensor_before.restrict(ep)
>>> tsdtensor_after
Time (s)
----------  -------------------------------
1.0         [[-2.178334 ...  0.324199] ...]
13.0        [[-1.875677 ... -0.906721] ...]
20.0        [[0.326845 ... 0.736122] ...]
21.0        [[1.62292 ... 0.89663] ...]
34.0        [[-0.870305 ...  2.943663] ...]
58.0        [[-0.441766 ... -1.426479] ...]
...
466.0       [[-1.045913 ...  1.601238] ...]
474.0       [[ 1.354845 ... -0.382483] ...]
475.0       [[ 1.347856 ... -2.011918] ...]
476.0       [[-0.218104 ... -0.019882] ...]
484.0       [[0.454563 ... 0.636631] ...]
491.0       [[ 0.618141 ... -0.10405 ] ...]
dtype: float64, shape: (53, 4, 4)

tsdtensor_after is a timestamp tensor restricted to the epochs.