pynapple.TsdFrame.groupby#

TsdFrame.groupby(by, get_group=None)[source]#

Group pynapple object by metadata name(s).

Parameters:
  • by (str or list of str) – Metadata name(s) to group by.

  • get_group (dictionary key, optional) – Name of the group to return.

Returns:

Dictionary of object indices (dictionary values) corresponding to each group (dictionary keys), or pynapple object corresponding to ‘get_group’ if it has been supplied.

Return type:

dict or pynapple object

Raises:

ValueError – If metadata name does not exist.

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> metadata = {"l1": [1, 2, 2], "l2": ["x", "x", "y"]}
>>> tsdframe = nap.TsdFrame(t=np.arange(5), d=np.ones((5, 3)), metadata=metadata)
>>> print(tsdframe)
Time (s)    0         1         2
----------  --------  --------  --------
0.0         1.0       1.0       1.0
1.0         1.0       1.0       1.0
2.0         1.0       1.0       1.0
3.0         1.0       1.0       1.0
4.0         1.0       1.0       1.0
Metadata
--------    --------  --------  --------
l1          1         2         2
l2          x         x         y

dtype: float64, shape: (5, 3)

Grouping by a single row:

>>> tsdframe.groupby("l2")
{'x': [0, 1], 'y': [2]}

Grouping by multiple rows:

>>> tsdframe.groupby(["l1","l2"])
{(1, 'x'): [0], (2, 'x'): [1], (2, 'y'): [2]}

Filtering to a specific group using the output dictionary:

>>> groups = tsdframe.groupby("l2")
>>> tsdframe[:,groups["x"]]
Time (s)    0         1
----------  --------  --------
0.0         1.0       1.0
1.0         1.0       1.0
2.0         1.0       1.0
3.0         1.0       1.0
4.0         1.0       1.0
Metadata
--------    --------  --------
l1          1         2
l2          x         x

dtype: float64, shape: (5, 2)

Filtering to a specific group using the get_group argument:

>>> tsdframe.groupby("l2", get_group="x")
Time (s)    0         1
----------  --------  --------
0.0         1.0       1.0
1.0         1.0       1.0
2.0         1.0       1.0
3.0         1.0       1.0
4.0         1.0       1.0
Metadata
--------    --------  --------
l1          1         2
l2          x         x

dtype: float64, shape: (5, 2)