pynapple.process.warping#
Functions to create trial-based tensors and warp times
Functions
|
Return trial-based tensor from an IntervalSet object. |
|
Return linearly time-warped trial-based tensor from an IntervalSet object. |
- pynapple.process.warping.build_tensor(input, ep, bin_size=None, align='start', padding_value=nan, time_unit='s')[source]#
Return trial-based tensor from an IntervalSet object. This is equivalent to calling input.to_trial_tensor for Tsd, TsdFrame, and TsdTensor objects, or is equivalent to calling input.trial_count for Ts and TsGroup objects.
If input is a TsGroup, returns a numpy array of shape (number of group elements, number of trials, number of time bins). The bin_size parameter determines the number of time bins.
If input is Tsd, TsdFrame or TsdTensor, returns a numpy array of shape (shape of time series, number of trials, number of time points).
The align parameter controls how the time series are aligned. If align=”start”, the time series are aligned to the start of each trial. If align=”end”, the time series are aligned to the end of each trial.
If trials have uneven durations, the returned array is padded. The parameter padding_value determine which value is used to pad the array. Default is NaN.
- Parameters:
input (Ts, Tsd, TsdFrame, TsdTensor or TsGroup) – Input to slice and align to the trials within the ep parameter.
ep (IntervalSet) – Epochs holding the trials. Each interval can be of unequal size.
bin_size (Number, optional) – Size of the time bins for TsGroup and Ts objects.
align (str, optional) – How to align the time series (‘start’ [default], ‘end’)
padding_value (Number, optional) – How to pad the array if unequal intervals. Default is np.nan.
time_unit (str, optional) – Time units of the bin_size parameter (‘s’ [default], ‘ms’, ‘us’).
- Return type:
numpy.ndarray
- Raises:
RuntimeError – If time_unit not in [“s”, “ms”, “us”]
Examples
>>> import pynapple as nap >>> import numpy as np >>> group = nap.TsGroup({0:nap.Ts(t=np.arange(0, 100))}) >>> ep = nap.IntervalSet(start=np.arange(20, 100, 20), end=np.arange(20, 100, 20) + np.arange(2, 10, 2)) >>> print(ep) index start end 0 20 22 1 40 44 2 60 66 3 80 88 shape: (4, 2), time unit: sec.
Create a trial-based tensor by counting events within 1 second bin for each interval of ep.
>>> tensor = nap.build_tensor(group, ep, bin_size=1) >>> tensor array([[[ 1., 1., nan, nan, nan, nan, nan, nan], [ 1., 1., 1., 1., nan, nan, nan, nan], [ 1., 1., 1., 1., 1., 1., nan, nan], [ 1., 1., 1., 1., 1., 1., 1., 1.]]])
By default, the time series are aligned to the start of the epochs. The parameter align control this behavior.
>>> tensor = nap.build_tensor(group, ep, bin_size=1, align="end") >>> tensor array([[[nan, nan, nan, nan, nan, nan, 1., 1.], [nan, nan, nan, nan, 1., 1., 1., 1.], [nan, nan, 1., 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1., 1., 1., 1.]]])
This function works for any time series.
>>> tsdframe = nap.TsdFrame(t=np.arange(100), d=np.arange(200).reshape(2,100).T) >>> tensor = nap.build_tensor(tsdframe, ep) >>> tensor array([[[ 20., 21., 22., nan, nan, nan, nan, nan, nan], [ 40., 41., 42., 43., 44., nan, nan, nan, nan], [ 60., 61., 62., 63., 64., 65., 66., nan, nan], [ 80., 81., 82., 83., 84., 85., 86., 87., 88.]], [[120., 121., 122., nan, nan, nan, nan, nan, nan], [140., 141., 142., 143., 144., nan, nan, nan, nan], [160., 161., 162., 163., 164., 165., 166., nan, nan], [180., 181., 182., 183., 184., 185., 186., 187., 188.]]])
- pynapple.process.warping.warp_tensor(input, ep, num_bins)[source]#
Return linearly time-warped trial-based tensor from an IntervalSet object.
If input is a TsGroup, returns a numpy array of shape (number of group element, number of trial, num_bins).
If input is Tsd, TsdFrame or TsdTensor, returns a numpy array of shape (shape of time series, number of trial, num_bins).
- Parameters:
- Return type:
numpy.ndarray
Examples
>>> import pynapple as nap >>> import numpy as np >>> group = nap.TsGroup({0:nap.Ts(t=np.arange(0, 100))}) >>> ep = nap.IntervalSet(start=np.arange(20, 100, 20), end=np.arange(20, 100, 20) + np.arange(2, 10, 2)) >>> print(ep) index start end 0 20 22 1 40 44 2 60 66 3 80 88 shape: (4, 2), time unit: sec.
Create a trial-based tensor by counting events within 10 bins between start and end of each interval of ep.
>>> tensor = nap.warp_tensor(group, ep, num_bins=10) >>> tensor array([[[1., 0., 0., 0., 0., 1., 0., 0., 0., 0.], [1., 0., 1., 0., 0., 1., 0., 1., 0., 0.], [1., 1., 0., 1., 0., 1., 1., 0., 1., 0.], [1., 1., 1., 1., 0., 1., 1., 1., 1., 0.]]])
This function works for any time series. Under the hood, the time series is either bin-averaged or interpolated depending on the number of bins.
>>> tsd = nap.Tsd(t=np.arange(100), d=np.arange(100)) >>> tensor = nap.warp_tensor(tsd, ep, num_bins=3) >>> tensor array([[20. , 21. , 22. ], [40.5, 42. , 43. ], [60.5, 62.5, 64.5], [81. , 84. , 87. ]])