pynapple.process.warping#

Functions to create trial-based tensors and warp times

Functions

build_tensor(input, ep[, bin_size, align, ...])

Return trial-based tensor from an IntervalSet object.

warp_tensor(input, ep, num_bins)

Return linearly time-warped trial-based tensor from an IntervalSet object.

pynapple.process.warping.build_tensor(input, ep, bin_size=None, align='start', padding_value=nan, time_unit='s')[source]#

Return trial-based tensor from an IntervalSet object. This is equivalent to calling input.to_trial_tensor for Tsd, TsdFrame, and TsdTensor objects, or is equivalent to calling input.trial_count for Ts and TsGroup objects.

  • If input is a TsGroup, returns a numpy array of shape (number of group elements, number of trials, number of time bins). The bin_size parameter determines the number of time bins.

  • If input is Tsd, TsdFrame or TsdTensor, returns a numpy array of shape (shape of time series, number of trials, number of time points).

The align parameter controls how the time series are aligned. If align=”start”, the time series are aligned to the start of each trial. If align=”end”, the time series are aligned to the end of each trial.

If trials have uneven durations, the returned array is padded. The parameter padding_value determine which value is used to pad the array. Default is NaN.

Parameters:
  • input (Ts, Tsd, TsdFrame, TsdTensor or TsGroup) – Input to slice and align to the trials within the ep parameter.

  • ep (IntervalSet) – Epochs holding the trials. Each interval can be of unequal size.

  • bin_size (Number, optional) – Size of the time bins for TsGroup and Ts objects.

  • align (str, optional) – How to align the time series (‘start’ [default], ‘end’)

  • padding_value (Number, optional) – How to pad the array if unequal intervals. Default is np.nan.

  • time_unit (str, optional) – Time units of the bin_size parameter (‘s’ [default], ‘ms’, ‘us’).

Return type:

numpy.ndarray

Raises:

RuntimeError – If time_unit not in [“s”, “ms”, “us”]

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> group = nap.TsGroup({0:nap.Ts(t=np.arange(0, 100))})
>>> ep = nap.IntervalSet(start=np.arange(20, 100, 20), end=np.arange(20, 100, 20) + np.arange(2, 10, 2))
>>> print(ep)
  index    start    end
      0       20     22
      1       40     44
      2       60     66
      3       80     88
shape: (4, 2), time unit: sec.

Create a trial-based tensor by counting events within 1 second bin for each interval of ep.

>>> tensor = nap.build_tensor(group, ep, bin_size=1)
>>> tensor
array([[[ 1.,  1., nan, nan, nan, nan, nan, nan],
        [ 1.,  1.,  1.,  1., nan, nan, nan, nan],
        [ 1.,  1.,  1.,  1.,  1.,  1., nan, nan],
        [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]]])

By default, the time series are aligned to the start of the epochs. The parameter align control this behavior.

>>> tensor = nap.build_tensor(group, ep, bin_size=1, align="end")
>>> tensor
array([[[nan, nan, nan, nan, nan, nan,  1.,  1.],
        [nan, nan, nan, nan,  1.,  1.,  1.,  1.],
        [nan, nan,  1.,  1.,  1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]]])

This function works for any time series.

>>> tsdframe = nap.TsdFrame(t=np.arange(100), d=np.arange(200).reshape(2,100).T)
>>> tensor = nap.build_tensor(tsdframe, ep)
>>> tensor
array([[[ 20.,  21.,  22.,  nan,  nan,  nan,  nan,  nan,  nan],
        [ 40.,  41.,  42.,  43.,  44.,  nan,  nan,  nan,  nan],
        [ 60.,  61.,  62.,  63.,  64.,  65.,  66.,  nan,  nan],
        [ 80.,  81.,  82.,  83.,  84.,  85.,  86.,  87.,  88.]],
       [[120., 121., 122.,  nan,  nan,  nan,  nan,  nan,  nan],
        [140., 141., 142., 143., 144.,  nan,  nan,  nan,  nan],
        [160., 161., 162., 163., 164., 165., 166.,  nan,  nan],
        [180., 181., 182., 183., 184., 185., 186., 187., 188.]]])
pynapple.process.warping.warp_tensor(input, ep, num_bins)[source]#

Return linearly time-warped trial-based tensor from an IntervalSet object.

  • If input is a TsGroup, returns a numpy array of shape (number of group element, number of trial, num_bins).

  • If input is Tsd, TsdFrame or TsdTensor, returns a numpy array of shape (shape of time series, number of trial, num_bins).

Parameters:
Return type:

numpy.ndarray

Examples

>>> import pynapple as nap
>>> import numpy as np
>>> group = nap.TsGroup({0:nap.Ts(t=np.arange(0, 100))})
>>> ep = nap.IntervalSet(start=np.arange(20, 100, 20), end=np.arange(20, 100, 20) + np.arange(2, 10, 2))
>>> print(ep)
  index    start    end
      0       20     22
      1       40     44
      2       60     66
      3       80     88
shape: (4, 2), time unit: sec.

Create a trial-based tensor by counting events within 10 bins between start and end of each interval of ep.

>>> tensor = nap.warp_tensor(group, ep, num_bins=10)
>>> tensor
array([[[1., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
        [1., 0., 1., 0., 0., 1., 0., 1., 0., 0.],
        [1., 1., 0., 1., 0., 1., 1., 0., 1., 0.],
        [1., 1., 1., 1., 0., 1., 1., 1., 1., 0.]]])

This function works for any time series. Under the hood, the time series is either bin-averaged or interpolated depending on the number of bins.

>>> tsd = nap.Tsd(t=np.arange(100), d=np.arange(100))
>>> tensor = nap.warp_tensor(tsd, ep, num_bins=3)
>>> tensor
array([[20. , 21. , 22. ],
       [40.5, 42. , 43. ],
       [60.5, 62.5, 64.5],
       [81. , 84. , 87. ]])