pynapple.TsGroup.groupby_apply#
- TsGroup.groupby_apply(by, func, input_key=None, **func_kwargs)[source]#
Apply a function to each group in a grouped pynapple object.
- Parameters:
by (str or list of str) – Metadata name(s) to group by.
func (function) – Function to apply to each group.
input_key (str or None, optional) – Input key that the grouped object will be passed as. If None, the grouped object will be passed as the first positional argument.
**func_kwargs (optional) – Additional keyword arguments to pass to the function. Any required positional arguments that are not the grouped object should be passed as keyword arguments.
- Returns:
Dictionary of results from applying the function to each group, where the keys are the group names and the values are the results.
- Return type:
dict
Examples
>>> import pynapple as nap >>> import numpy as np >>> tmp = {0:nap.Ts(t=np.arange(0,40), time_units='s'), ... 1:nap.Ts(t=np.arange(0,40,0.5), time_units='s'), ... 2:nap.Ts(t=np.arange(0,40,0.25), time_units='s'), ... } >>> metadata = {"l1": [1, 2, 2], "l2": ["x", "x", "y"]} >>> tsgroup = nap.TsGroup(tmp,metadata=metadata) >>> print(tsgroup) Index rate l1 l2 ------- ------- ---- ---- 0 1.00629 1 x 1 2.01258 2 x 2 4.02516 2 y
Apply a custom function:
>>> tsgroup.groupby_apply("l2", lambda x: x.to_tsd().shape[0]) {'x': 120, 'y': 160}
Apply a function with additional arguments:
>>> feature = nap.Tsd( ... t=np.arange(40), ... d=np.concatenate([np.zeros(20), np.ones(20)]), ... time_support=nap.IntervalSet(np.array([[0, 5], [10, 12], [20, 33]])), ... ) >>> tsgroup.groupby_apply("l2", nap.compute_1d_tuning_curves, feature=feature, nb_bins=2) {'x': 0 1 0.25 1.15 2.044444 0.75 1.15 2.217857, 'y': 2 0.25 3.833333 0.75 4.353571}