pynapple.IntervalSet.groupby#
- IntervalSet.groupby(by, get_group=None)[source]#
Group pynapple object by metadata name(s).
- Parameters:
by (str or list of str) – Metadata name(s) to group by.
get_group (dictionary key, optional) – Name of the group to return.
- Returns:
Dictionary of object indices (dictionary values) corresponding to each group (dictionary keys), or pynapple object corresponding to ‘get_group’ if it has been supplied.
- Return type:
dict or pynapple object
- Raises:
ValueError – If metadata name does not exist.
Examples
>>> import pynapple as nap >>> import numpy as np >>> times = np.array([[0, 5], [10, 12], [20, 33]]) >>> metadata = {"l1": [1, 2, 2], "l2": ["x", "x", "y"]} >>> ep = nap.IntervalSet(times,metadata=metadata) >>> print(ep) index start end l1 l2 0 0 5 1 x 1 10 12 2 x 2 20 33 2 y shape: (3, 2), time unit: sec.
Grouping by a single column:
>>> ep.groupby("l2") {'x': [0, 1], 'y': [2]}
Grouping by multiple columns:
>>> ep.groupby(["l1","l2"]) {(1, 'x'): [0], (2, 'x'): [1], (2, 'y'): [2]}
Filtering to a specific group using the output dictionary:
>>> groups = ep.groupby("l2") >>> ep[groups["x"]] index start end l1 l2 0 0 5 1 x 1 10 12 2 x shape: (2, 2), time unit: sec.
Filtering to a specific group using the get_group argument:
>>> ep.groupby("l2", get_group="x") index start end l1 l2 0 0 5 1 x 1 10 12 2 x shape: (2, 2), time unit: sec.