Perievent#

The perievent module allows to re-center time series and timestamps data around a particular event as well as computing events (spikes) trigger average.

Hide code cell content
import pynapple as nap
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
custom_params = {"axes.spines.right": False, "axes.spines.top": False}
sns.set_theme(style="ticks", palette="colorblind", font_scale=1.5, rc=custom_params)

Peri-Event Time Histogram (PETH)#

stim = nap.Tsd(
    t=np.sort(np.random.uniform(0, 1000, 50)), 
    d=np.random.rand(50), time_units="s"
)
ts1 = nap.Ts(t=np.sort(np.random.uniform(0, 1000, 2000)), time_units="s")

The function compute_perievent align timestamps to a particular set of timestamps.

peth = nap.compute_perievent(
  data=ts1, 
  tref=stim, 
  minmax=(-0.1, 0.2), 
  time_unit="s")

print(peth)
Index    rate     ref_times
-------  -------  -----------
0        6.66667  7.82802
1        nan      25.33385
2        10.0     30.04419
3        nan      36.22891
4        3.33333  62.31257
5        nan      95.89927
6        nan      136.28616
...      ...      ...
43       3.33333  845.36048
44       3.33333  846.94912
45       3.33333  849.33189
46       3.33333  851.8305
47       3.33333  872.10345
48       nan      965.22459
49       nan      965.34716

The returned object is a TsGroup. The column ref_times is a metadata column that indicates the center timestamps.

Raster plot#

It is then easy to create a raster plot around the times of the stimulation event by calling the to_tsd function of pynapple to “flatten” the TsGroup peth.

plt.figure(figsize=(10, 6))
plt.subplot(211)
plt.plot(np.sum(peth.count(0.01), 1), linewidth=3, color="red")
plt.xlim(-0.1, 0.2)
plt.ylabel("Count")
plt.axvline(0.0)
plt.subplot(212)
plt.plot(peth.to_tsd(), "|", markersize=20, color="red", mew=4)
plt.xlabel("Time from stim (s)")
plt.ylabel("Stimulus")
plt.xlim(-0.1, 0.2)
plt.axvline(0.0)
<matplotlib.lines.Line2D at 0x7f553f466410>
../_images/50bf52029a66037a8227d81234739b922b6af73807d3f4f5584935679b3ec663.png

The same function can be applied to a group of neurons. In this case, it returns a dict of TsGroup

Event trigger average#

The function compute_event_trigger_average compute the average feature around a particular event time.

Hide code cell content
group = {
    0: nap.Ts(t=np.sort(np.random.uniform(0, 100, 10))),
    1: nap.Ts(t=np.sort(np.random.uniform(0, 100, 20))),
    2: nap.Ts(t=np.sort(np.random.uniform(0, 100, 30))),
}

tsgroup = nap.TsGroup(group)
eta = nap.compute_event_trigger_average(
  group=tsgroup, 
  feature=stim, 
  binsize=0.1, 
  windowsize=(-1, 1))

print(eta)
Time (s)         0        1        2
----------  ------  -------  -------
-1.0        0.3527  0.27244  0.36502
-0.9        0.3527  0.27244  0.36502
-0.8        0.3527  0.27244  0.36502
-0.7        0.3527  0.2955   0.35173
-0.6        0.3527  0.2955   0.35173
-0.5        0.3527  0.2955   0.36573
-0.4        0.3527  0.2955   0.36573
...
0.4         0.3527  0.32145  0.32562
0.5         0.3527  0.32145  0.32562
0.6         0.3527  0.32145  0.32562
0.7         0.3527  0.32145  0.30869
0.8         0.3527  0.32145  0.30869
0.9         0.3527  0.32145  0.30869
1.0         0.3527  0.32145  0.30869
dtype: float64, shape: (21, 3)

Peri-Event continuous time series#

The function nap.compute_perievent_continuous align a time series of any dimensions around events.

Hide code cell content
features = nap.TsdFrame(t=np.arange(0, 100), d=np.random.randn(100,6))
events = nap.Ts(t=np.sort(np.random.uniform(0, 100, 5)))
perievent = nap.compute_perievent_continuous(
  data=features, 
  tref=events, 
  minmax=(-1, 1))

print(perievent)
Time (s)
----------  -------------------------------
-1          [[-0.278905 ...  0.425598] ...]
0           [[-0.388683 ...  0.620535] ...]
1           [[ 0.771996 ... -1.193331] ...]
dtype: float64, shape: (3, 5, 6)

The object perievent is now of shape (number of bins, (dimensions of input), number of events ) :

print(perievent.shape)
(3, 5, 6)