Perievent#

The perievent module allows to re-center time series and timestamps data around a particular event as well as computing events (spikes) trigger average.

Hide code cell content
import pynapple as nap
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
custom_params = {"axes.spines.right": False, "axes.spines.top": False}
sns.set_theme(style="ticks", palette="colorblind", font_scale=1.5, rc=custom_params)

Peri-Event Time Histogram (PETH)#

stim = nap.Tsd(
    t=np.sort(np.random.uniform(0, 1000, 50)), 
    d=np.random.rand(50), time_units="s"
)
ts1 = nap.Ts(t=np.sort(np.random.uniform(0, 1000, 2000)), time_units="s")

The function compute_perievent align timestamps to a particular set of timestamps.

peth = nap.compute_perievent(
  timestamps=ts1, 
  tref=stim, 
  minmax=(-0.1, 0.2), 
  time_unit="s")

print(peth)
Index    rate      ref_times
-------  --------  -----------
0        3.33333   62.98
1        3.33333   134.39
2        nan       200.43
3        3.33333   234.91
4        13.33333  268.83
5        6.66667   273.7
6        nan       285.74
...      ...       ...
43       nan       792.33
44       3.33333   808.76
45       nan       848.03
46       nan       937.43
47       nan       968.58
48       6.66667   993.16
49       6.66667   999.76

The returned object is a TsGroup. The column ref_times is a metadata column that indicates the center timestamps.

Raster plot#

It is then easy to create a raster plot around the times of the stimulation event by calling the to_tsd function of pynapple to “flatten” the TsGroup peth.

plt.figure(figsize=(10, 6))
plt.subplot(211)
plt.plot(np.mean(peth.count(0.01), 1) / 0.01, linewidth=3, color="red")
plt.xlim(-0.1, 0.2)
plt.ylabel("Rate (spikes/sec)")
plt.axvline(0.0)
plt.subplot(212)
plt.plot(peth.to_tsd(), "|", markersize=20, color="red", mew=4)
plt.xlabel("Time from stim (s)")
plt.ylabel("Stimulus")
plt.xlim(-0.1, 0.2)
plt.axvline(0.0)
<matplotlib.lines.Line2D at 0x7f5f13cbfa10>
../_images/258bfc945c92db2077cf3796f72b0095894d72a9d8b53aa865ceec352bb4e2b3.png

The same function can be applied to a group of neurons. In this case, it returns a dict of TsGroup.

Event trigger average#

The function compute_event_trigger_average compute the average feature around a particular event time.

Hide code cell content
group = {
    0: nap.Ts(t=np.sort(np.random.uniform(0, 100, 10))),
    1: nap.Ts(t=np.sort(np.random.uniform(0, 100, 20))),
    2: nap.Ts(t=np.sort(np.random.uniform(0, 100, 30))),
}

tsgroup = nap.TsGroup(group)
eta = nap.compute_event_trigger_average(
  group=tsgroup, 
  feature=stim, 
  binsize=0.1, 
  windowsize=(-1, 1))

print(eta)
Time (s)    0        1        2
----------  -------  -------  -------
-1.0        0.06392  0.08522  0.08522
-0.9        0.06392  0.08522  0.08522
-0.8        0.06392  0.08522  0.08522
-0.7        0.06392  0.08522  0.08522
-0.6        0.08522  0.08522  0.08522
-0.5        0.08522  0.08522  0.08522
-0.4        0.08522  0.08522  0.08522
...         ...      ...      ...
0.4         0.08522  0.08522  0.08522
0.5         0.08522  0.08522  0.08522
0.6         0.08522  0.08522  0.08522
0.7         0.08522  0.08522  0.08522
0.8         0.08522  0.08522  0.08522
0.9         0.08522  0.08522  0.08522
1.0         0.08522  0.08522  0.08522
dtype: float64, shape: (21, 3)

Peri-Event continuous time series#

The function nap.compute_perievent_continuous align a time series of any dimensions around events.

Hide code cell content
features = nap.TsdFrame(t=np.arange(0, 100), d=np.random.randn(100,6))
events = nap.Ts(t=np.sort(np.random.uniform(0, 100, 5)))
perievent = nap.compute_perievent_continuous(
  timeseries=features, 
  tref=events, 
  minmax=(-1, 1))

print(perievent)
Time (s)
----------  -------------------------------
-1          [[ 1.086675 ... -0.684018] ...]
0           [[-2.176375 ...  0.049402] ...]
1           [[-1.494644 ...  1.989631] ...]
dtype: float64, shape: (3, 5, 6)

The object perievent is now of shape (number of bins, (dimensions of input), number of events):

print(perievent.shape)
(3, 5, 6)