Perievent#

The perievent module allows to re-center time series and timestamps data around a particular event as well as computing events (spikes) trigger average.

Hide code cell content
import pynapple as nap
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
custom_params = {"axes.spines.right": False, "axes.spines.top": False}
sns.set_theme(style="ticks", palette="colorblind", font_scale=1.5, rc=custom_params)

Peri-Event Time Histogram (PETH)#

stim = nap.Tsd(
    t=np.sort(np.random.uniform(0, 1000, 50)), 
    d=np.random.rand(50), time_units="s"
)
ts1 = nap.Ts(t=np.sort(np.random.uniform(0, 1000, 2000)), time_units="s")

The function compute_perievent align timestamps to a particular set of timestamps.

peth = nap.compute_perievent(
  data=ts1, 
  tref=stim, 
  minmax=(-0.1, 0.2), 
  time_unit="s")

print(peth)
Index    rate     ref_times
-------  -------  -----------
0        3.33333  1.5293
1        nan      9.41442
2        nan      17.30314
3        nan      32.11224
4        10.0     41.87182
5        nan      148.64493
6        3.33333  165.73857
...      ...      ...
43       nan      865.12852
44       nan      901.04928
45       nan      920.91548
46       3.33333  940.85299
47       nan      943.82649
48       nan      973.80072
49       6.66667  993.12957

The returned object is a TsGroup. The column ref_times is a metadata column that indicates the center timestamps.

Raster plot#

It is then easy to create a raster plot around the times of the stimulation event by calling the to_tsd function of pynapple to “flatten” the TsGroup peth.

plt.figure(figsize=(10, 6))
plt.subplot(211)
plt.plot(np.sum(peth.count(0.01), 1), linewidth=3, color="red")
plt.xlim(-0.1, 0.2)
plt.ylabel("Count")
plt.axvline(0.0)
plt.subplot(212)
plt.plot(peth.to_tsd(), "|", markersize=20, color="red", mew=4)
plt.xlabel("Time from stim (s)")
plt.ylabel("Stimulus")
plt.xlim(-0.1, 0.2)
plt.axvline(0.0)
<matplotlib.lines.Line2D at 0x7f12dfec64a0>
../_images/8d86bcab5aad88155cd578bcc027a4012c36e479a3ea79b9832549774ba606a4.png

The same function can be applied to a group of neurons. In this case, it returns a dict of TsGroup

Event trigger average#

The function compute_event_trigger_average compute the average feature around a particular event time.

Hide code cell content
group = {
    0: nap.Ts(t=np.sort(np.random.uniform(0, 100, 10))),
    1: nap.Ts(t=np.sort(np.random.uniform(0, 100, 20))),
    2: nap.Ts(t=np.sort(np.random.uniform(0, 100, 30))),
}

tsgroup = nap.TsGroup(group)
eta = nap.compute_event_trigger_average(
  group=tsgroup, 
  feature=stim, 
  binsize=0.1, 
  windowsize=(-1, 1))

print(eta)
Time (s)          0        1        2
----------  -------  -------  -------
-1.0        0.36753  0.60177  0.64921
-0.9        0.36753  0.60177  0.64921
-0.8        0.36753  0.60177  0.64921
-0.7        0.36753  0.60177  0.64921
-0.6        0.36753  0.60177  0.64921
-0.5        0.38961  0.63925  0.64921
-0.4        0.38961  0.63925  0.64921
...
0.4         0.42958  0.64477  0.63194
0.5         0.42958  0.64477  0.63194
0.6         0.42958  0.64477  0.63194
0.7         0.42958  0.64477  0.63194
0.8         0.42958  0.64477  0.63194
0.9         0.42958  0.64477  0.63194
1.0         0.42958  0.64477  0.63574
dtype: float64, shape: (21, 3)

Peri-Event continuous time series#

The function nap.compute_perievent_continuous align a time series of any dimensions around events.

Hide code cell content
features = nap.TsdFrame(t=np.arange(0, 100), d=np.random.randn(100,6))
events = nap.Ts(t=np.sort(np.random.uniform(0, 100, 5)))
perievent = nap.compute_perievent_continuous(
  data=features, 
  tref=events, 
  minmax=(-1, 1))

print(perievent)
Time (s)
----------  -------------------------------
-1          [[0.117985 ... 1.343123] ...]
0           [[ 0.848519 ... -1.408934] ...]
1           [[-1.0103   ... -1.205193] ...]
dtype: float64, shape: (3, 5, 6)

The object perievent is now of shape (number of bins, (dimensions of input), number of events ) :

print(perievent.shape)
(3, 5, 6)