Tuning curves#

Pynapple can compute 1 dimension tuning curves (for example firing rate as a function of angular direction) and 2 dimension tuning curves ( for example firing rate as a function of position). It can also compute average firing rate for different epochs (for example firing rate for different epochs of stimulus presentation).

Important

If you are using calcium imaging data with the activity of the cell as a continuous transient, the function to call ends with _continuous for continuous time series (e.g. compute_1d_tuning_curves_continuous).

Hide code cell content
import pynapple as nap
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pprint import pprint
custom_params = {"axes.spines.right": False, "axes.spines.top": False}
sns.set_theme(style="ticks", palette="colorblind", font_scale=1.5, rc=custom_params)
Hide code cell content
group = {
    0: nap.Ts(t=np.sort(np.random.uniform(0, 100, 10))),
    1: nap.Ts(t=np.sort(np.random.uniform(0, 100, 20))),
    2: nap.Ts(t=np.sort(np.random.uniform(0, 100, 30))),
}

tsgroup = nap.TsGroup(group)

from epochs#

The epochs should be stored in a dictionnary :

dict_ep =  {
                "stim0": nap.IntervalSet(start=0, end=20),
                "stim1":nap.IntervalSet(start=30, end=70)
            }

nap.compute_discrete_tuning_curves takes a TsGroup for spiking activity and a dictionary of epochs. The output is a pandas DataFrame where each column is a unit in the TsGroup and each row is one IntervalSet type. The value is the mean firing rate of the neuron during this set of intervals.

mean_fr = nap.compute_discrete_tuning_curves(tsgroup, dict_ep)

pprint(mean_fr)
         0     1      2
stim0  0.0  0.15  0.250
stim1  0.1  0.20  0.325

from timestamps activity#

1-dimension tuning curves#

Hide code cell content
from scipy.ndimage import gaussian_filter1d

# Fake Tuning curves
N = 6 # Number of neurons
bins = np.linspace(0, 2*np.pi, 61)
x = np.linspace(-np.pi, np.pi, len(bins)-1)
tmp = np.roll(np.exp(-(1.5*x)**2), (len(bins)-1)//2)
generative_tc = np.array([np.roll(tmp, i*(len(bins)-1)//N) for i in range(N)]).T

# Feature
T = 50000
dt = 0.002
timestep = np.arange(0, T)*dt
feature = nap.Tsd(
    t=timestep,
    d=gaussian_filter1d(np.cumsum(np.random.randn(T)*0.5), 20)%(2*np.pi)
    )
index = np.digitize(feature, bins)-1

# Spiking activity
count = np.random.poisson(generative_tc[index])>0
tsgroup = nap.TsGroup(
    {i:nap.Ts(timestep[count[:,i]]) for i in range(N)},
    time_support = nap.IntervalSet(0, 100)
    )

Mandatory arguments are TsGroup, Tsd (or TsdFrame with 1 column only) and nb_bins for number of bins of the tuning curves.

If an IntervalSet is passed with ep, everything is restricted to ep otherwise the time support of the feature is used.

The min and max of the tuning curve is by default the min and max of the feature. This can be tweaked with the argument minmax.

The output is a pandas DataFrame. Each column is a unit from TsGroup argument. The index of the DataFrame carries the center of the bin in feature space.

tuning_curve = nap.compute_1d_tuning_curves(
    group=tsgroup,
    feature=feature,
    nb_bins=120, 
    minmax=(0, 2*np.pi)
    )

print(tuning_curve)
                   0           1    2    3         4           5
0.026180  319.803350   50.762437  0.0  0.0  0.000000   32.995584
0.078540  306.152695   41.371986  0.0  0.0  0.000000   24.823191
0.130900  310.225183   79.077007  0.0  0.0  0.000000   13.382263
0.183260  304.026181   76.634699  0.0  0.0  0.000000   18.844598
0.235619  294.579535  107.237287  0.0  0.0  0.000000    7.752093
...              ...         ...  ...  ...       ...         ...
6.047566  293.254810   11.603608  0.0  0.0  0.000000  126.584810
6.099926  321.519433   17.730851  0.0  0.0  2.364113   70.923404
6.152286  317.863500   25.000500  0.0  0.0  0.000000   67.858500
6.204645  315.551555   31.323132  0.0  0.0  0.000000   47.564756
6.257005  320.299805   31.785477  0.0  0.0  0.000000   52.568289

[120 rows x 6 columns]
plt.figure()
plt.plot(tuning_curve)
plt.xlabel("Feature space")
plt.ylabel("Firing rate (Hz)")
plt.show()
../_images/7e99e6a1c6dd95cccb6b8289c5f4ab2288bf8d6a3836b54eed0317684ac0e422.png

Internally, the function is calling the method value_from which maps a timestamps to its closest value in time from a Tsd object. It is then possible to validate the tuning curves by displaying the timestamps as well as their associated values.

Hide code cell source
plt.figure()
plt.subplot(121)
plt.plot(tsgroup[3].value_from(feature), 'o')
plt.plot(feature, label="feature")
plt.ylabel("Feature")
plt.xlim(0, 2)
plt.xlabel("Time (s)")
plt.subplot(122)
plt.plot(tuning_curve[3].values, tuning_curve[3].index.values, label="Tuning curve (unit=3)")
plt.xlabel("Firing rate (Hz)")
plt.legend()
plt.show()
../_images/ffc5e16ce1e5c02f304a054b242f6be3ddd6b64cab04fe4bfc6f338c008c6b60.png

2-dimension tuning curves#

Hide code cell content
dt = 0.01
T = 10
epoch = nap.IntervalSet(start=0, end=T, time_units="s")
features = np.vstack((np.cos(np.arange(0, T, dt)), np.sin(np.arange(0, T, dt)))).T
features = nap.TsdFrame(
    t=np.arange(0, T, dt),
    d=features,
    time_units="s",
    time_support=epoch,
    columns=["a", "b"],
)
tsgroup = nap.TsGroup({
    0: nap.Ts(t=np.sort(np.random.uniform(0, T, 10))),
    1: nap.Ts(t=np.sort(np.random.uniform(0, T, 15))),
    2: nap.Ts(t=np.sort(np.random.uniform(0, T, 20))),
}, time_support=epoch)

The group argument must be a TsGroup object. The features argument must be a 2-columns TsdFrame object. nb_bins can be an int or a tuple of 2 ints.

tcurves2d, binsxy = nap.compute_2d_tuning_curves(
    group=tsgroup, 
    features=features, 
    nb_bins=(5,5),
    minmax=(-1, 1, -1, 1)
)
pprint(tcurves2d)
{0: array([[0.        , 2.4691358 , 0.        , 1.12359551, 0.        ],
       [0.        ,        nan,        nan,        nan, 1.13636364],
       [2.5       ,        nan,        nan,        nan, 1.2345679 ],
       [0.        ,        nan,        nan,        nan, 1.13636364],
       [7.14285714, 0.        , 0.        , 1.13636364, 0.        ]]),
 1: array([[0.        , 2.4691358 , 0.        , 2.24719101, 3.50877193],
       [4.44444444,        nan,        nan,        nan, 1.13636364],
       [2.5       ,        nan,        nan,        nan, 1.2345679 ],
       [0.        ,        nan,        nan,        nan, 0.        ],
       [0.        , 4.44444444, 0.        , 1.13636364, 1.75438596]]),
 2: array([[0.        , 2.4691358 , 3.75      , 0.        , 1.75438596],
       [0.        ,        nan,        nan,        nan, 0.        ],
       [0.        ,        nan,        nan,        nan, 2.4691358 ],
       [4.54545455,        nan,        nan,        nan, 1.13636364],
       [3.57142857, 2.22222222, 6.55737705, 2.27272727, 1.75438596]])}
/home/runner/.local/lib/python3.10/site-packages/pynapple/process/tuning_curves.py:269: RuntimeWarning: invalid value encountered in divide
  count = count / occupancy

tcurves2d is a dictionnary with each key a unit in TsGroup. binsxy is a numpy array representing the centers of the bins and is useful for plotting tuning curves. Bins that have never been visited by the feature have been assigned a NaN value.

Checking the accuracy of the tuning curves can be bone by displaying the spikes aligned to the features with the function value_from which assign to each spikes the corresponding features value for unit 0.

ts_to_features = tsgroup[0].value_from(features)
print(ts_to_features)
Time (s)           a         b
----------  --------  --------
0.993361     0.54869   0.83603
1.37005      0.19945   0.97991
2.09835     -0.50485   0.86321
2.64595     -0.88158   0.47203
3.50678     -0.9329   -0.36013
4.71627      0.00761  -0.99997
5.45129      0.67252  -0.74008
5.49612      0.70867  -0.70554
6.58373      0.95627   0.29248
9.64778     -0.97474  -0.22332
dtype: float64, shape: (10, 2)

tsgroup[0] which is a Ts object has been transformed to a TsdFrame object with each timestamps (spike times) being associated with a features value.

Hide code cell source
plt.figure()
plt.subplot(121)
plt.plot(features["b"], features["a"], label="features")
plt.plot(ts_to_features["b"], ts_to_features["a"], "o", color="red", markersize=4, label="spikes")
plt.xlabel("feature b")
plt.ylabel("feature a")
[plt.axvline(b, linewidth=0.5, color='grey') for b in np.linspace(-1, 1, 6)]
[plt.axhline(b, linewidth=0.5, color='grey') for b in np.linspace(-1, 1, 6)]
plt.subplot(122)
extents = (
    np.min(features["a"]),
    np.max(features["a"]),
    np.min(features["b"]),
    np.max(features["b"]),
)
plt.imshow(tcurves2d[0], 
    origin="lower", extent=extents, cmap="viridis",
    aspect='auto'
    )
plt.title("Tuning curve unit 0")
plt.xlabel("feature b")
plt.ylabel("feature a")
plt.grid(False)
plt.colorbar()
plt.tight_layout()
plt.show()
../_images/3f3696ae270a577bc4897c031d2b44ab94b324913cdb26321c842df283f9d07e.png

from continuous activity#

Tuning curves compute with the following functions are usually made with data from calcium imaging activities.

1-dimension tuning curves#

Hide code cell content
from scipy.ndimage import gaussian_filter1d

# Fake Tuning curves
N = 3 # Number of neurons
bins = np.linspace(0, 2*np.pi, 61)
x = np.linspace(-np.pi, np.pi, len(bins)-1)
tmp = np.roll(np.exp(-(1.5*x)**2), (len(bins)-1)//2)
generative_tc = np.array([np.roll(tmp, i*(len(bins)-1)//N) for i in range(N)]).T

# Feature
T = 50000
dt = 0.002
timestep = np.arange(0, T)*dt
feature = nap.Tsd(
    t=timestep,
    d=gaussian_filter1d(np.cumsum(np.random.randn(T)*0.5), 20)%(2*np.pi)
    )
index = np.digitize(feature, bins)-1
tmp = generative_tc[index]
tmp = tmp + np.random.randn(*tmp.shape)*1
# Calcium activity
tsdframe = nap.TsdFrame(
    t=timestep,
    d=tmp
    )

Arguments are TsdFrame (for example continuous calcium data), Tsd or TsdFrame for the 1-d feature and nb_bins for the number of bins.

tuning_curves = nap.compute_1d_tuning_curves_continuous(
    tsdframe=tsdframe,
    feature=feature,
    nb_bins=120,
    minmax=(0, 2*np.pi)
    )

print(tuning_curves)
                 0         1         2
0.026180  1.036999  0.017706 -0.072927
0.078540  0.995681  0.048372 -0.014222
0.130900  0.812014  0.022531  0.044231
0.183260  0.929921  0.003504  0.003414
0.235619  0.753769 -0.017999 -0.082787
...            ...       ...       ...
6.047566  0.813010  0.014774 -0.121134
6.099926  1.004482  0.034686 -0.042553
6.152286  0.974599  0.028493 -0.048718
6.204645  0.970381 -0.033318 -0.018441
6.257005  1.085766 -0.024711 -0.027156

[120 rows x 3 columns]
plt.figure()
plt.plot(tuning_curves)
plt.xlabel("Feature space")
plt.ylabel("Mean activity")
plt.show()
../_images/5254553ca5f0dbd77f05aa4fb9d0e32a09233ddfdb8feab34d42357599826f00.png

2-dimension tuning curves#

Hide code cell content
dt = 0.01
T = 10
epoch = nap.IntervalSet(start=0, end=T, time_units="s")
features = np.vstack((np.cos(np.arange(0, T, dt)), np.sin(np.arange(0, T, dt)))).T
features = nap.TsdFrame(
    t=np.arange(0, T, dt),
    d=features,
    time_units="s",
    time_support=epoch,
    columns=["a", "b"],
)


# Calcium activity
tsdframe = nap.TsdFrame(
    t=timestep,
    d=np.random.randn(len(timestep), 2)
    )

Arguments are TsdFrame (for example continuous calcium data), Tsd or TsdFrame for the 1-d feature and nb_bins for the number of bins.

tuning_curves, xy = nap.compute_2d_tuning_curves_continuous(
    tsdframe=tsdframe,
    features=features,
    nb_bins=5,    
    )

print(tuning_curves)
{0: array([[-0.04981698,  0.05013693, -0.08138478,  0.03452544, -0.01910623],
       [ 0.00180448,         nan,         nan,         nan, -0.09755402],
       [ 0.01222257,         nan,         nan,         nan, -0.01053156],
       [-0.07019317,         nan,         nan,         nan, -0.01384285],
       [-0.04829488, -0.0539769 ,  0.05153256, -0.00983982, -0.01791971]]), 1: array([[-0.1854611 ,  0.11144342,  0.01841171, -0.00722098, -0.00123917],
       [ 0.08469355,         nan,         nan,         nan, -0.05694232],
       [-0.00079209,         nan,         nan,         nan, -0.0023015 ],
       [ 0.14415005,         nan,         nan,         nan,  0.01315794],
       [ 0.06257169,  0.03123988, -0.12721245, -0.00845645,  0.01941917]])}
/home/runner/.local/lib/python3.10/site-packages/numpy/core/fromnumeric.py:3504: RuntimeWarning: Mean of empty slice.
  return _methods._mean(a, axis=axis, dtype=dtype,
/home/runner/.local/lib/python3.10/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide
  ret = um.true_divide(
plt.figure()
plt.subplot(121)
plt.plot(features["b"], features["a"], label="features")
plt.xlabel("feature b")
plt.ylabel("feature a")
[plt.axvline(b, linewidth=0.5, color='grey') for b in np.linspace(-1, 1, 6)]
[plt.axhline(b, linewidth=0.5, color='grey') for b in np.linspace(-1, 1, 6)]
plt.subplot(122)
extents = (
    np.min(features["a"]),
    np.max(features["a"]),
    np.min(features["b"]),
    np.max(features["b"]),
)
plt.imshow(tuning_curves[0], 
    origin="lower", extent=extents, cmap="viridis",
    aspect='auto'
    )
plt.title("Tuning curve unit 0")
plt.xlabel("feature b")
plt.ylabel("feature a")
plt.grid(False)
plt.colorbar()
plt.tight_layout()
plt.show()
../_images/9f04b1e6a57146ece56f31c2d2fdf84acce5ee2b35cd2f06122df878d7e44c6e.png