Correlograms & ISI#
Let’s generate some data. Here we have two neurons recorded together. We can group them in a TsGroup.
ts1 = nap.Ts(t=np.sort(np.random.uniform(0, 1000, 2000)), time_units="s")
ts2 = nap.Ts(t=np.sort(np.random.uniform(0, 1000, 1000)), time_units="s")
epoch = nap.IntervalSet(start=0, end=1000, time_units="s")
ts_group = nap.TsGroup({0: ts1, 1: ts2}, time_support=epoch)
print(ts_group)
Index rate
------- ------
0 2
1 1
Autocorrelograms#
We can compute their autocorrelograms meaning the number of spikes of a neuron observed in a time windows centered around its own spikes.
For this we can use the function compute_autocorrelogram.
We need to specifiy the binsize and windowsize to bin the spike train.
autocorrs = nap.compute_autocorrelogram(
group=ts_group, binsize=100, windowsize=1000, time_units="ms", ep=epoch # ms
)
print(autocorrs)
0 1
-0.9 1.0250 1.03
-0.8 0.9800 0.93
-0.7 1.0600 0.98
-0.6 0.9200 0.84
-0.5 1.0250 0.85
-0.4 0.9625 1.09
-0.3 0.9850 1.01
-0.2 0.9050 0.84
-0.1 0.9325 1.02
0.0 0.0000 0.00
0.1 0.9325 1.02
0.2 0.9050 0.84
0.3 0.9850 1.01
0.4 0.9625 1.09
0.5 1.0250 0.85
0.6 0.9200 0.84
0.7 1.0600 0.98
0.8 0.9800 0.93
0.9 1.0250 1.03
The variable autocorrs is a pandas DataFrame with the center of the bins
for the index and each column is an autocorrelogram of one unit in the TsGroup.
Cross-correlograms#
Cross-correlograms are computed between pairs of neurons.
crosscorrs = nap.compute_crosscorrelogram(
group=ts_group, binsize=100, windowsize=1000, time_units="ms" # ms
)
print(crosscorrs)
0
1
-0.9 0.910
-0.8 1.120
-0.7 0.910
-0.6 1.000
-0.5 1.050
-0.4 1.045
-0.3 1.045
-0.2 0.975
-0.1 0.980
0.0 0.960
0.1 0.975
0.2 1.060
0.3 1.105
0.4 0.965
0.5 1.185
0.6 0.980
0.7 0.885
0.8 0.955
0.9 0.935
Column name (0, 1) is read as cross-correlogram of neuron 0 and 1 with neuron 0 being the reference time.
Event-correlograms#
Event-correlograms count the number of event in the TsGroup based on an event timestamps object.
eventcorrs = nap.compute_eventcorrelogram(
group=ts_group, event = nap.Ts(t=[0, 10, 20]), binsize=0.1, windowsize=1
)
print(eventcorrs)
0 1
-0.9 1.360544 0.000000
-0.8 1.360544 0.000000
-0.7 0.000000 0.000000
-0.6 0.000000 0.000000
-0.5 0.000000 0.000000
-0.4 1.360544 0.000000
-0.3 1.360544 0.000000
-0.2 0.000000 3.333333
-0.1 1.360544 0.000000
0.0 0.000000 0.000000
0.1 1.360544 0.000000
0.2 0.000000 0.000000
0.3 0.000000 0.000000
0.4 0.000000 0.000000
0.5 0.000000 0.000000
0.6 0.000000 0.000000
0.7 0.000000 3.333333
0.8 2.721088 0.000000
0.9 2.721088 0.000000
Interspike interval (ISI) distribution#
The interspike interval distribution shows how the time differences between subsequent spikes (events) are distributed.
The input can be any object with timestamps. Passing epochs restricts the computation to the given epochs.
The output will be a dataframe with the bin centres as index and containing the corresponding ISI counts per unit.
isi_distribution = nap.compute_isi_distribution(
data=ts_group, bins=10, epochs=epoch
)
print(isi_distribution)
0 1
0.365475 1540 512
1.096284 354 265
1.827094 73 115
2.557903 23 49
3.288712 8 35
4.019522 0 12
4.750331 1 6
5.481140 0 4
6.211950 0 0
6.942759 0 1
The bins argument allows for choosing either the number of bins as an integer or the bin edges as an array directly:
isi_distribution = nap.compute_isi_distribution(
data=ts_group, bins=np.linspace(0, 3, 10), epochs=epoch
)
print(isi_distribution)
0 1
0.166667 967 277
0.500000 507 189
0.833333 259 163
1.166667 132 110
1.500000 64 75
1.833333 31 50
2.166667 16 44
2.500000 8 17
2.833333 7 18
The log_scale argument allows for applying the log-transform to the ISIs:
isi_distribution = nap.compute_isi_distribution(
data=ts_group, bins=10, log_scale=True, epochs=epoch
)
print(isi_distribution)
0 1
-8.987100 1 0
-7.831722 1 1
-6.676344 8 1
-5.520966 17 9
-4.365588 66 18
-3.210210 175 36
-2.054831 448 137
-0.899453 818 308
0.255925 439 396
1.411303 26 93