Power spectral density#

Hide code cell source
import pynapple as nap
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
custom_params = {"axes.spines.right": False, "axes.spines.top": False}
sns.set_theme(style="ticks", palette="colorblind", font_scale=1.5, rc=custom_params)

Generating a signal#

Let’s generate a dummy signal with 2Hz and 10Hz sinusoide with white noise.

F = [2, 10]

Fs = 2000
t = np.arange(0, 200, 1/Fs)
sig = nap.Tsd(
    t=t,
    d=np.cos(t*2*np.pi*F[0])+np.cos(t*2*np.pi*F[1])+np.random.normal(0, 3, len(t)),
    time_support = nap.IntervalSet(0, 200)
    )
Hide code cell source
plt.figure()
plt.plot(sig.get(0, 0.4))
plt.title("Signal")
plt.xlabel("Time (s)")
Text(0.5, 0, 'Time (s)')
../_images/07aca425174b5003b45e88aa4bc2942ad615b86c094531d5a2918e982f110962.png

Computing power spectral density (PSD)#

To compute a PSD of a signal, you can use the function nap.compute_power_spectral_density. With norm=True, the output of the FFT is divided by the length of the signal.

psd = nap.compute_power_spectral_density(sig, norm=True)

Pynapple returns a pandas DataFrame.

print(psd)
                          0
0.000    0.004527+0.000000j
0.005    0.004952-0.003951j
0.010    0.011304+0.001425j
0.015   -0.006080+0.002960j
0.020   -0.002420-0.002830j
...                     ...
999.975 -0.000196+0.000487j
999.980 -0.001795+0.005342j
999.985 -0.001131+0.005476j
999.990 -0.001576+0.002940j
999.995  0.002081-0.001596j

[200000 rows x 1 columns]

It is then easy to plot it.

plt.figure()
plt.plot(np.abs(psd))
plt.xlabel("Frequency (Hz)")
plt.ylabel("Amplitude")
Text(0, 0.5, 'Amplitude')
../_images/780ed68df274d57f51c989e6182fda64fff1069dfe42bfbe2c672aa2adaddc98.png

Note that the output of the FFT is truncated to positive frequencies. To get positive and negative frequencies, you can set full_range=True. By default, the function returns the frequencies up to the Nyquist frequency. Let’s zoom on the first 20 Hz.

plt.figure()
plt.plot(np.abs(psd))
plt.xlabel("Frequency (Hz)")
plt.ylabel("Amplitude")
plt.xlim(0, 20)
(0.0, 20.0)
../_images/81082230e09b9ab2919f37f291592a9924e8a7115e97219382b7afcf75a7205b.png

We find the two frequencies 2 and 10 Hz.

By default, pynapple assumes a constant sampling rate and a single epoch. For example, computing the FFT over more than 1 epoch will raise an error.

double_ep = nap.IntervalSet([0, 50], [20, 100])

try:
    nap.compute_power_spectral_density(sig, ep=double_ep)
except ValueError as e:
    print(e)
Given epoch (or signal time_support) must have length 1

Computing mean PSD#

It is possible to compute an average PSD over multiple epochs with the function nap.compute_mean_power_spectral_density.

In this case, the argument interval_size determines the duration of each epochs upon which the FFT is computed. If not epochs is passed, the function will split the time_support.

In this case, the FFT will be computed over epochs of 10 seconds.

mean_psd = nap.compute_mean_power_spectral_density(sig, interval_size=20.0, norm=True)

Let’s compare mean_psd to psd. In both cases, the ouput is normalized.

Hide code cell source
plt.figure()
plt.plot(np.abs(psd), label='PSD')
plt.plot(np.abs(mean_psd), label='Mean PSD (10s)')
plt.xlabel("Frequency (Hz)")
plt.ylabel("Amplitude")
plt.legend()
plt.xlim(0, 15)
(0.0, 15.0)
../_images/8b3d52d73e81a655e89e3fa0649e13c52514c4327e34dd7706f6d41e2efb2ce0.png

As we can see, nap.compute_mean_power_spectral_density was able to smooth out the noise.